1. In the following diagram of a 4-way set-associative cache with 32 blocks, highlight the areas of the cache where block 17 can be placed.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

2. Calculate the number of bits required for the *index*, *offset*, *tag* for a *direct-mapped cache* with **1024 cache lines** and **32 bytes per line**.

L = 1024 (given). W = 1 because it's direct-mapped. B = 32 (given). Index bits $= \log_2\left(\frac{1024}{1}\right) = 10$ Offset bits $= \log_2(32) = 5$ Tag bits = 32 - (10 + 5) = 17

3. Calculate the number of bits required for the *index*, *offset*, and *tag* for a **32 KiB direct**mapped cache with **64-byte cache lines**.

L = 32KiB/64B = 512 (cache size over line size). W = 1 because it's direct-mapped. B = 64 (given).

Index bits = $\log_2\left(\frac{512}{1}\right) = 9$ Offset bits = $\log_2(64) = 6$ Tag bits = 32 - (9 + 6) = 17

4. Calculate the number of bits required for the *index*, *offset*, and *tag* for a **32** KiB cache with **2048 lines** that is **4-way associative**.

L = 2048 (given). W = 4. B = 32KiB/2048 = 16B (cache size over line size). Index bits = $\log_2\left(\frac{2048}{4}\right) = 9$ Offset bits = $\log_2(16) = 4$ Tag bits = 32 - (9 + 4) = 19