CSCI 564 Advanced Computer Architecture

Lecture 13: Multiprocessors

Dr. Bo Wu
April 23, 2021

Colorado School of Mines

Why Paralle] Computers?

Parallelism: Doing multiple things at a time
Things: instructions, operations, tasks

Main Goal
— Improve performance (Execution time or task throughput)
« Execution time of a program governed by Amdahl’ s Law

Other Goals
— Reduce power consumption
* (4N units at freq F/4) consume less power than (N units at freq F)
* Why?
— Improve cost efficiency and scalability, reduce complexity
 Harder to design a single unit that performs as well as N simpler units

Types of Parallelism and How to Exploit
Them

+ Instruction Level Parallelism
— Different instructions within a stream can be executed in parallel
— Pipelining, out-of-order execution
— Dataflow

« Data Parallelism
— Different pieces of data can be operated on in parallel
— SIMD: Vector processing, array processing
— GPUs

« Task Level Parallelism
— Different “tasks/threads” can be executed in parallel
— Multithreading
— Multiprocessing (multi-core)

Task-Level Parallelism: Creating
Tasks

 Partition a single problem into multiple related tasks (threads)
— Explicitly: Parallel programming
« Easy when tasks are natural in the problem
— Web/database queries
« Difficult when natural task boundaries are unclear

— Transparently/implicitly: compiler vectorization

* Run many independent tasks (processes) together
— Easy when there are many processes
« Batch simulations, different users, cloud computing workloads
— Does not improve the performance of a single task

Multiprocessing Fundamentals

Multiprocessor Types

» Loosely coupled multiprocessors
— No shared global memory address space
— Multicomputer network
» Network-based multiprocessors
— Usually programmed via message passing
+ Explicit calls (send, receive) for communication

+ Tightly coupled multiprocessors
— Shared global memory address space
— Traditional multiprocessing: symmetric multiprocessing (SMP)
« Existing multi-core processors, multithreaded processors

— Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except
» Operations on shared data require synchronization

Main Issues in Tightly-Coupled MP

Shared memory synchronization
— Locks, atomic operations

Cache consistency
— More commonly called cache coherence

Ordering of memory operations
— What should the programmer expect the hardware to provide?

Resource sharing, contention, partitioning
Communication: Interconnection networks
Load imbalance

Parallel Speedup Example

Assume each operation 1 cycle, no communication cost, each op can be
executed in a different processor

How fast is this with a single processor?
— Assume no pipelining or concurrent execution of instructions

How fast is this with 3 processors?

[Bmaues e b s bl O

Sn‘sh_ preesse— « 14 opetATIS (da:%?%}

B R e 0 X* > an ¥ 0

Three praaésc}s . i 53 (emcepmee whn 3 poe.)

Speedup with 3 Processors
Ta=_Scydes

SPCCJUP whh 3M¢SWS = ___1___ — 2_2_
: 3

)
Ty

ls THs a for compricen?

11

Superlinear Speedup

» (Can speedup be greater than P with P processing elements?

» Cache effects
+ Working set effects

Parallel
Speedup

4

Superlinear R

Typical
Success

—Tr—T—T—T1—1—1— 1 #Processors

Revisiting the Single-Processor

Rewsit Tt

Rete— Srns\&-rgrcccésd‘ alge e
R = 4 i =
— B8 PN, o S Sl W il LN - P il 2 - b SRE X
A

(((aqx+al)x e B J ek a,>x + Oo

(}’h;rncf"s rh&”\od)

Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.

Utilization, Redundancy, Efficiency

Utilization: How much processing capability is used
— U = (# Operations in parallel version) / (processors x Time)

*Redundancy: how much extra work is done with parallel processing

— R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

«Efficiency
— E = (Time with 1 processor) / (processors x Time with P processors)
- E=U/R

Utilization of a Multiprocessor

Mulvpreassc meddC s,

UHbzdhwn . P muvdh ,orazSSmf; Copolifhg we use-
—pP —>
TIX| x| X |
- TP 2 e o U= 10 pedters (m f«/@%rm)
- 0]
AP,
X | =

16

Caveats of Parallelism (I)

St
i ,«éﬁ a—— lneor spedvp

S

=2

e g——rerliily

o —
-

1' P(J# of prucsses)

Why +re cealdg (dmmmhong rehens)

_Z;,:: o(.,_L_ o (1—0&.).2.;
P

Puralll i zalo)e fu(*)"/qaf-ohr)\ R W L
of The Smge-pruessc
presrzen

Redmdma,: : H—wu mudh extra wr'k, due 4t m«/f'hpmas&vb

R_ = OP-‘-‘- w A p.prvc.be$¥- i 10

esk

O,os wirh, 1 ,ar«..b

R s alwoys = 1

E#f"‘w = Han mudh resource vt use coveved v how
’ meth BSIVTE Wt Con §ed Gurty Wi
1 Tb_¢$\" l ; ;
E =1l dymsve 1 pufo- Te et unids)
P. Tph‘s*_ <h’”‘5 > p P for Tp Tt s)

 mo- v o |
K /N

)

Amdahl’s Law

5peedu,° — T, — 1
b
P prec. TF' : %—- + (1 "‘X)
S pecdup = 1
el i 1 _@\% bdhereck for pedled

Speeohe

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.
19

Speedvp)

Amdahl’s Law Implication 1

ot = .G%

== .9S

ol =z .q
i e

Ardahl's

Lo
I Nushvated

Addmng moe pnd more
proussws Gres)e;sg\cs

boweft if o<1

20

Spectly /P

Amdahl’s Law Implication 2

¢ : e
' pt.- Tre beacf (spedup)
; 55 sroll yr) gLl

:

21

Caveats of Parallelism

« Amdahl’ s Law
— f: Parallelizable fraction of a program
— N: Number of processors

Speedup =

-+

1-f +

— Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

+ Maximum speedup limited by serial portion: Serial bottleneck
 Parallel portion is usually not perfectly parallel

— Synchronization overhead (e.g., updates to shared data)

— Load imbalance overhead (imperfect parallelization)

— Resource sharing overhead (contention among N processors)

Speedup

Sequential Bottleneck

—N=10

—N=100

=——N=1000

e
T O N O N T ON O T T ON O W T ON OO FT AN O ~
Qo d AN AN g T TN gOORNNGSXRRRNR
o O o o o O o o o O o o o o o o o O o o
f (parallel fraction)

Why the Sequential Bottleneck?

» Parallel machines have the
sequential bottleneck

/\/_

« Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)

for(i=0;i<N;i++)
A[i] = (A[i] + A[i-1]) / 2

» Single thread prepares data and
spawns parallel tasks (usually
sequential)

AVAS EEAYAY
AVAVEERAVAV

AVAYEENAVAV
AVAY I AVAV
—\"\U

Asymmetry Enables Customization

Cc (o] o] [c2
C1
Cc Cc Cc Cc Cc3
Cc Cc Cc [+ ca o2 c4 c4
Cc Cc o] [C5 C5 C5 C5
Symmetric Asymmetric

» Symmetric: One size fits all
— Energy and performance suboptimal for different “workload” behaviors

» Asymmetric: Enables customization and adaptation
— Processing requirements vary across workloads (applications and phases)
— Execute code on best-fit resources (minimal energy, adequate perf.)

Aside: Examples from Life

Heterogeneity is abundant in life
— both in nature and human-made components

Humans are heterogeneous

Cells are heterogeneous > specialized for different tasks
Organs are heterogeneous

Cars are heterogeneous

Buildings are heterogeneous

Rooms are heterogeneous

General-Purpose vs. Special-
Purpose

Asymmetry is a way of enabling specialization

It bridges the gap between purely general purpose and purely special
purpose

— Purely general purpose: Single design for every workload or metric

— Purely special purpose: Single design per workload or metric

— Asymmetric: Multiple sub-designs optimized for sets of workloads/metrics
and glued together

The goal of a good asymmetric design is to get the best of both general
purpose and special purpose

Asymmetry Advantages and
Disadvantages

Advantages over Symmetric Design

+ Can enable optimization of multiple metrics

+ Can enable better adaptation to workload behavior

+ Can provide special-purpose benefits with general-purpose usability/flexibility

Disadvantages over Symmetric Design

- Higher overhead and more complexity in design, verification

- Higher overhead in management: scheduling onto asymmetric components

- Overhead in switching between multiple components can lead to degradation

Yet Another Example

» Modern processors integrate general purpose cores and GPUs
— CPU-GPU systems
— Heterogeneity in execution models

Example from MySQL

Asymmetric
Critical

Section Access Open Tables Cache 8
N 7
a 6
3 s
D 4
R

2 Today
1
0

\ Parallel o 8 16 2

Chip Area (cores)

Demands in Different Code Sections
What we want:

In a serialized code section = one powerful “large” core

In a parallel code section = many wimpy “small” cores

These two conflict with each other:
— If you have a single powerful core, you cannot have many cores
— A small core is much more energy and area efficient than a large core

’

11 ’ 11 144
Large vs. Small" Cores

Large Small
Core Core
e Qut-of-order * In-order
* Wide fetch e.g. 4-wide + Narrow Fetch e.g. 2-wide
* Deeper pipeline * Shallow pipeline
e Aggressive branch))
predictor (e.g. hybrid) » Simple branch predictor
Multiple functional units (e.g. Gshare)
Trace cache * Few functional units
Memarv denendence

e.g., 2x performance for 4x area (power)

(_\. [] []

Large Cores are power inefficient: J

Large vs. Small Cores

» Grochowski et al., “Best of both Latency and Throughput,” ICCD 2004.

Large core Small core
Microarchitecture Qut-of-order, In-order

128-256 entry

ROB
Width 3-4 1
Pipeline depth 20-30 5
Normalized 5-8x 1x
performance
Normalized power 20-50x 1x
Normalized 4-6x 1x
energy/instruction

Remember the Demands

What we want:
In a serialized code section = one powerful “large” core
In a parallel code section = many wimpy “small” cores

These two conflict with each other:
— If you have a single powerful core, you cannot have many cores
— A small core is much more energy and area efficient than a large core

Can we get the best of both worlds?

Performance vs. Parallelism

Assumptions:

1. Small cores takes an area budget of 1 and has
performance of 1

2. Large core takes an area budget of 4 and has
performance of 2

Tile-Large Approach

Large Large
core core

Large Large
core core

“Tile-Large”

 Tile a few large cores

« IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem
+ High performance on single thread, serial code sections (2 units)
- Low throughput on parallel program portions (8 units)

Tile-Small Approach

Small [Small | Small | Small
core core core core

Small | Small | Small | Small
core core core core

Small | Small | Small | Small
core core core core

Small | Small | Small | Small
core core core core

i “Tile-Small”
+ Tile many small cores

« Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small)
+ High throughput on the parallel part (16 units)
- Low performance on the serial part, single thread (1 unit)

Can we get the best of both worlds?

» Tile Large

+ High performance on single thread, serial code sections (2
units)

- Low throughput on parallel program portions (8 units)

+ Tile Small
+ High throughput on the parallel part (16 units)

- Low performance on the serial part, single thread (1 unit),
reduced single-thread performance compared to existing single
thread processors

+ Idea: Have both large and small on the same chip >
Performance asymmetry

Asymmetric Multi-Core

Asymmetric Chip Multiprocessor
(ACMP)

Small | Small | Small | Small Small | Small

Large Large core | core | core | core Large core | core
core core Small | Small | Small | Small core Small | Small
core | core | core | core core | core

Small | Small | Small | Small Small | Small [Small | Small

La rge Lal’ge core core core core core core core core
core core Small | Small | Small | Small Small | Small | Small | Small
core core core core core core core core

e ” e ”
Tile-Large Tile-Small ACMP

» Provide one large core and many small cores
+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high throughput
(1242 units)

Accelerating Serial Bottlenecks

Single thread - Large core

Q
05585
¢

Small
core

Small
core

Small
core

Small [Small | Small | Small
c [« c

ACMP Approach

ACMP Performance vs. Parallelism

Area-budget = 16 small cores

)

Large | Large
core | core

Large | Large
core | core

(Small Small[Small|Small

core | core | core | core

~

Small| Small|Small|Small
core | core | core | core

Small| Small| Small [Small
core | core | core | core

Small| Small| Small[Small
core | core | core | core

(Small[Small \

Large core | core

core [Small|Small
core | core

Small| Small|Small[Small
core | core | core | core

Small| Small|Small|Small
core | core | core | core

“Tile-Large” “Tile-Small” ACMP
Large 4 0 1
Cores
Small 0 16 12
Cores
Serial 2 1 2
Performance
Parallel 2x4=8 1x16=16 1x2 + 1x12 =14

Throughput

Amdahl’ s Law Modified

Simplified Amdahl’ s Law for an Asymmetric Multiprocessor
Assumptions:

— Serial portion executed on the large core

— Parallel portion executed on both small cores and large cores
— f: Parallelizable fraction of a program

— L: Number of large processors

— S: Number of small processors

— X: Speedup of a large processor over a small one

Speedup =

X S+ XL

Accelerating Parallel Bottlenecks

Serialized or imbalanced execution in the parallel portion can also
benefit from a large core

Examples:
— Critical sections that are contended
— Parallel stages that take longer than others to execute

Idea: Dynamically identify these code portions that cause serialization
and execute them on a large core

Accelerated Critical Sections

M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures”
Proceedings of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2009

12 jterations, 33% instructions inside the critical section

Contention for Critical Sections

Critical

Section
1 Parallel
= = |dle

Contention for Critical Sections

12 iterations, 33% instructions inside the critical section

Critical
Section

@

1 [Parallel
- 1
e T — s I — s == lde
1
I
1

EE Accelerating critical sections
P-3lmm increases performance and scalability
777777 b Critical
Section
Accelerated

by 2x

An Example: Accelerated Critical

Sections

Idea: HW/SW ships critical sections to a large, powerful core in an
asymmetric multi-core architecture

Benefit:
— Reduces serialization due to contended locks
— Reduces the performance impact of hard-to-parallelize sections

— Programmer does not need to (heavily) optimize parallel code -> fewer
bugs, improved productivity

Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 2010,
IEEE Micro Top Picks 2011.

SRB)

ritical Section
Request Buffer

Accelerated Critical Sections

EnterCS()

PriorityQ.insert(...)
LeaveCS()

1. P2 encounters a critical section (CSCALL)
2. P2 sends CSCALL Request to CSRB

3. P1 executes Critical Section

4. P1 sends CSDONE signal

P1

D

Core executing
critical section

117 .

Interconnect

Accelerated Critical Sections (ACS)

Small Core

A = compute()
LOCK X

result = CS(A)
UNLOCK X

print result

Small Core Large Core
A = compute()
PUSHA

CSC',‘i\.LL X, Target PC oot Request .
W } aiting in

Critical Section
STACK_PTR, CORE_ID Request Buffer

(CSRB)
TPC: Acquire X
POP A
result = CS(A)
PUSH result
Release X
CSRET X

S

CSDONE Response
POP result

print result

+ Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009.

False Serialization

* ACS can serialize independent critical sections

» Selective Acceleration of Critical Sections (SEL)
— Saturating counters to track false serialization

To large core

I

Al 2 CSCALL (A) Critical Section
Request Buffer
5 |5 CSCALL (A) (CSRB)
CSCALL (B)

I

From small cores

