
CSCI 564 Advanced Computer Architecture
Lecture 13: Multiprocessors

Dr. Bo Wu
April 23, 2021

Colorado School of Mines

Why Parallel Computers?
• Parallelism: Doing multiple things at a time
• Things: instructions, operations, tasks

• Main Goal
– Improve performance (Execution time or task throughput)

• Execution time of a program governed by Amdahl’s Law

• Other Goals
– Reduce power consumption

• (4N units at freq F/4) consume less power than (N units at freq F)
• Why?

– Improve cost efficiency and scalability, reduce complexity
• Harder to design a single unit that performs as well as N simpler units

Types of Parallelism and How to Exploit
Them

• Instruction Level Parallelism
– Different instructions within a stream can be executed in parallel
– Pipelining, out-of-order execution
– Dataflow

• Data Parallelism
– Different pieces of data can be operated on in parallel
– SIMD: Vector processing, array processing
– GPUs

• Task Level Parallelism
– Different “tasks/threads” can be executed in parallel
– Multithreading
– Multiprocessing (multi-core)

Task-Level Parallelism: Creating
Tasks

• Partition a single problem into multiple related tasks (threads)
– Explicitly: Parallel programming

• Easy when tasks are natural in the problem
– Web/database queries

• Difficult when natural task boundaries are unclear

– Transparently/implicitly: compiler vectorization

• Run many independent tasks (processes) together
– Easy when there are many processes

• Batch simulations, different users, cloud computing workloads
– Does not improve the performance of a single task

Multiprocessing Fundamentals

Multiprocessor Types

• Loosely coupled multiprocessors
– No shared global memory address space
– Multicomputer network

• Network-based multiprocessors
– Usually programmed via message passing

• Explicit calls (send, receive) for communication

• Tightly coupled multiprocessors
– Shared global memory address space
– Traditional multiprocessing: symmetric multiprocessing (SMP)

• Existing multi-core processors, multithreaded processors
– Programming model similar to uniprocessors (i.e., multitasking

uniprocessor) except
• Operations on shared data require synchronization

Main Issues in Tightly-Coupled MP
• Shared memory synchronization

– Locks, atomic operations

• Cache consistency
– More commonly called cache coherence

• Ordering of memory operations
– What should the programmer expect the hardware to provide?

• Resource sharing, contention, partitioning
• Communication: Interconnection networks
• Load imbalance

Parallel Speedup Example
• a4x4 + a3x3 + a2x2 + a1x + a0

• Assume each operation 1 cycle, no communication cost, each op can be
executed in a different processor

• How fast is this with a single processor?
– Assume no pipelining or concurrent execution of instructions

• How fast is this with 3 processors?

9

10

Speedup with 3 Processors

11

Superlinear Speedup

• Can speedup be greater than P with P processing elements?

• Cache effects
• Working set effects

Revisiting the Single-Processor
Algorithm

Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.

14

Utilization, Redundancy, Efficiency

•Utilization: How much processing capability is used
– U = (# Operations in parallel version) / (processors x Time)

•Redundancy: how much extra work is done with parallel processing
– R = (# of operations in parallel version) / (# operations in best

single processor algorithm version)

•Efficiency
– E = (Time with 1 processor) / (processors x Time with P processors)
– E = U/R

Utilization of a Multiprocessor

16

Caveats of Parallelism (I)

17

18

Amdahl’s Law

19

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Amdahl’s Law Implication 1

20

Amdahl’s Law Implication 2

21

Caveats of Parallelism
• Amdahl’s Law

– f: Parallelizable fraction of a program
– N: Number of processors

– Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

• Maximum speedup limited by serial portion: Serial bottleneck
• Parallel portion is usually not perfectly parallel

– Synchronization overhead (e.g., updates to shared data)
– Load imbalance overhead (imperfect parallelization)
– Resource sharing overhead (contention among N processors)

Speedup =
1

+1 - f f
N

Sequential Bottleneck

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0
0.

04
0.

08
0.

12
0.

16 0.
2

0.
24

0.
28

0.
32

0.
36 0.
4

0.
44

0.
48

0.
52

0.
56 0.
6

0.
64

0.
68

0.
72

0.
76 0.
8

0.
84

0.
88

0.
92

0.
96 1

N=10

N=100

N=1000

f (parallel fraction)

Why the Sequential Bottleneck?
• Parallel machines have the

sequential bottleneck

• Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)

for (i = 0 ; i < N; i++)
A[i] = (A[i] + A[i-1]) / 2

• Single thread prepares data and
spawns parallel tasks (usually
sequential)

Asymmetry Enables Customization

• Symmetric: One size fits all
– Energy and performance suboptimal for different “workload” behaviors

• Asymmetric: Enables customization and adaptation
– Processing requirements vary across workloads (applications and phases)
– Execute code on best-fit resources (minimal energy, adequate perf.)

C4 C4

C5 C5

C4 C4

C5 C5

C2

C3

C1

Asymmetric

C C

C C

C C

C C

C C

C C

C C

C C

Symmetric

Aside: Examples from Life
• Heterogeneity is abundant in life

– both in nature and human-made components

• Humans are heterogeneous
• Cells are heterogeneous à specialized for different tasks
• Organs are heterogeneous
• Cars are heterogeneous
• Buildings are heterogeneous
• Rooms are heterogeneous
• …

General-Purpose vs. Special-
Purpose

• Asymmetry is a way of enabling specialization

• It bridges the gap between purely general purpose and purely special
purpose
– Purely general purpose: Single design for every workload or metric
– Purely special purpose: Single design per workload or metric
– Asymmetric: Multiple sub-designs optimized for sets of workloads/metrics

and glued together

• The goal of a good asymmetric design is to get the best of both general
purpose and special purpose

Asymmetry Advantages and
Disadvantages

• Advantages over Symmetric Design
+ Can enable optimization of multiple metrics
+ Can enable better adaptation to workload behavior
+ Can provide special-purpose benefits with general-purpose usability/flexibility

• Disadvantages over Symmetric Design
- Higher overhead and more complexity in design, verification
- Higher overhead in management: scheduling onto asymmetric components
- Overhead in switching between multiple components can lead to degradation

Yet Another Example
• Modern processors integrate general purpose cores and GPUs

– CPU-GPU systems
– Heterogeneity in execution models

Example from MySQL

Open database tables

Perform the operations
….

Critical
Section

Parallel

Access Open Tables Cache

0

1

2

3

4

5

6

7

8

0 8 16 24 32
0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

Sp
ee

du
p

Today

Asymmetric

Demands in Different Code Sections
• What we want:

• In a serialized code section à one powerful “large” core

• In a parallel code section à many wimpy “small” cores

• These two conflict with each other:
– If you have a single powerful core, you cannot have many cores
– A small core is much more energy and area efficient than a large core

“Large” vs. “Small” Cores

• Out-of-order
• Wide	fetch	e.g.	4-wide
• Deeper	pipeline
• Aggressive	branch	

predictor	(e.g.	hybrid)
• Multiple	functional	units
• Trace	cache
• Memory	dependence	

speculation

• In-order
• Narrow Fetch e.g. 2-wide
• Shallow pipeline
• Simple branch predictor

(e.g. Gshare)
• Few functional units

Large
Core

Small
Core

Large Cores are power inefficient:
e.g., 2x performance for 4x area (power)

Large vs. Small Cores

• Grochowski et al., “Best of both Latency and Throughput,” ICCD 2004.

Remember the Demands
• What we want:

• In a serialized code section à one powerful “large” core

• In a parallel code section à many wimpy “small” cores

• These two conflict with each other:
– If you have a single powerful core, you cannot have many cores
– A small core is much more energy and area efficient than a large core

• Can we get the best of both worlds?

Performance vs. Parallelism

Assumptions:

1. Small cores takes an area budget of 1 and has
performance of 1

2. Large core takes an area budget of 4 and has
performance of 2

Tile-Large Approach

• Tile a few large cores
• IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem
+ High performance on single thread, serial code sections (2 units)
- Low throughput on parallel program portions (8 units)

Large
core

Large
core

Large
core

Large
core

“Tile-Large”

Tile-Small Approach

• Tile many small cores
• Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small)
+ High throughput on the parallel part (16 units)
- Low performance on the serial part, single thread (1 unit)

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

“Tile-Small”

Can we get the best of both worlds?
• Tile Large

+ High performance on single thread, serial code sections (2
units)
- Low throughput on parallel program portions (8 units)

• Tile Small
+ High throughput on the parallel part (16 units)
- Low performance on the serial part, single thread (1 unit),
reduced single-thread performance compared to existing single
thread processors

• Idea: Have both large and small on the same chip à
Performance asymmetry

Asymmetric Multi-Core

39

Asymmetric Chip Multiprocessor
(ACMP)

• Provide one large core and many small cores
+ Accelerate serial part using the large core (2 units)
+ Execute parallel part on small cores and large core for high throughput

(12+2 units)

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

“Tile-Small”

Large
core

Large
core

Large
core

Large
core

“Tile-Large”

Accelerating Serial Bottlenecks

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP Approach

Single thread à Large core

ACMP Performance vs. Parallelism

Large
core

Large
core

Large
core

Large
core

“Tile-Large”
Large
Cores

4 0 1

Small
Cores

0 16 12

Serial
Performance

2 1 2

Parallel
Throughput

2 x 4 = 8 1 x 16 = 16 1x2 + 1x12 = 14

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

“Tile-Small”

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Area-budget = 16 small cores

Amdahl’s Law Modified
• Simplified Amdahl’s Law for an Asymmetric Multiprocessor
• Assumptions:

– Serial portion executed on the large core
– Parallel portion executed on both small cores and large cores
– f: Parallelizable fraction of a program
– L: Number of large processors
– S: Number of small processors
– X: Speedup of a large processor over a small one

Speedup =
1

+ f
S + X*L

1 - f
X

Accelerating Parallel Bottlenecks
• Serialized or imbalanced execution in the parallel portion can also

benefit from a large core

• Examples:
– Critical sections that are contended
– Parallel stages that take longer than others to execute

• Idea: Dynamically identify these code portions that cause serialization
and execute them on a large core

Accelerated Critical Sections

M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures"

Proceedings of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2009

Contention for Critical Sections

46

0

Critical
Section
Parallel
Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

33% in critical section

Contention for Critical Sections

47

0

Critical
Section
Parallel
Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

Accelerating critical sections
increases performance and scalability

Critical
Section
Accelerated
by 2x

An Example: Accelerated Critical
Sections

• Idea: HW/SW ships critical sections to a large, powerful core in an
asymmetric multi-core architecture

• Benefit:
– Reduces serialization due to contended locks
– Reduces the performance impact of hard-to-parallelize sections
– Programmer does not need to (heavily) optimize parallel code à fewer

bugs, improved productivity

• Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

• Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 2010,
IEEE Micro Top Picks 2011.

Accelerated Critical Sections
EnterCS()

PriorityQ.insert(…)

LeaveCS()

Onchip-
Interconnect

Critical Section
Request Buffer
(CSRB)

1. P2 encounters a critical section (CSCALL)
2. P2 sends CSCALL Request to CSRB
3. P1 executes Critical Section
4. P1 sends CSDONE signal

Core executing
critical section

P4P3P2
P1

Accelerated Critical Sections (ACS)

• Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009.

A = compute()

LOCK X
result = CS(A)

UNLOCK X

print result

Small CoreSmall Core Large Core
A = compute()

CSDONE Response

CSCALL Request
Send X, TPC,

STACK_PTR, CORE_ID

PUSH A
CSCALL X, Target PC

…
…
…

Acquire X
POP A
result = CS(A)
PUSH result
Release X
CSRET X

TPC:

POP result
print result

…
…
…
…

…
…
…

Waiting in
Critical Section
Request Buffer

(CSRB)

False Serialization
• ACS can serialize independent critical sections

• Selective Acceleration of Critical Sections (SEL)
– Saturating counters to track false serialization

CSCALL (A)

CSCALL (A)

CSCALL (B)

Critical Section
Request Buffer
(CSRB)

4

4

A

B

32

5

To large core

From small cores

