
CSCI 564 Advanced Computer Architecture
Lecture 02: Performance Metrics

Dr. Bo Wu (with modifications by Sumner Evans)
March 3, 2021

Colorado School of Mines

What features do you care about in a computer?

• Quietness (dB)
• Speed
• Perceived speed
• Responsiveness
• Battery life
• Good lookin’
• Volume
• Dimensions
• Portability
• Weight
• Size
• Flexibilty
• Reliability
• Expandability
• Upgradability

• Workmanship
• Memory bandwidth
• RGB
• Power consumption
• Good support
• Popularity
• MKBHD recommended
• Thermal performance
• Display quality
• It’s a Mac
• Ergonomics
• FPS for Fortnine
• Sound quality
• Network speed
• Good webcam for Zoom

• Connectivity / ports

• USB-C
• Thunderbolt
• HDMI
• Ethernet
• Bluetooth
• Floppy disk drive

• Warranty

• Storage capacity

• Storage speed

• Peripherals

• Quality

• Bells and whistles

• Price

We don’t care about most of these for this class.

Metrics

Metric: Latency

Latency is the most common metric in architecture

• Latency = runtime
• Speed = 1

Latency

• “Performance” usually, but not always, means latency

A measured latency is for some particular task

• A CPU doesn’t have a latency
• An application has a latency on a particular CPU.

Metric: Latency: Why Does It Matter?

• Application responsiveness
• Any time a person is waiting
• GUIs
• Games
• Internet services (from the user’s

perspective)
• “Real-time” applications

• Tight constraints enforced by
the real-world

• Anti-lock braking systems —
“hard” real-time

• Multi-media applications —
“soft” real-time

Metric: Speedup

Speedup is the ratio of two latencies

Speedup =
Latencyold
Latencynew

Speedup > 1 ⇒ performance increased
Speedup < 1 ⇒ performance decreased

If machine A is two times faster than machine B, then
LatencyA = LatencyB/2. Thus, the speedup of B relative to A is

Speedup =
LatencyA
LatencyB

=
LatencyB/2
LatencyB

=
1
2 = 0.5.

Metric: Speedup: Why is it Useful?

Speedup (and other ratio metrics) allow for the comparison of two
systems without reference to any absolute units.

• We can say “doubling the clock speed will give a 2x speedup”
without knowing anything about a concrete latency.

• It’s much easier than saying “If the program’s latency was
1,254 seconds, doubling the clock rate would reduce the
latency to 627 seconds.”

Metric: Throughput (Bandwidth)

Throughput is the number of tasks completed per unit of time

• Throughput is independent from the exact total number of
tasks.

• In what scenarios is throughput important?
• Data center servers (YouTube or Netflix, for example)
• High-performance computing

Latency Lags Bandwidth

Bandwidth improvements
have outpaced latency across
the main computer
technologies.
Page 19 of the book

Latency Lags Bandwidth: Why?

There is an old network say-
ing: bandwidth problems can
be cured with money. Latency
problems are harder because
the speed of light is fixed —
you can’t bribe God.

[Anonymous]

Some jobs are
just hard to par-
allelize!

Dr. Bo Wu

Application Question

Question: I have two processors: A and B. I’m only interested in
application C. The latency of finishing C on A is much smaller
than that on B. What can I say about the bandwidth difference
between A and B.

Answer: absolutely nothing!

The Internet “Land”-Speed Record
Fiber-optic cable

State of the art
networking

medium
(sent 585 GB)

1800

1.13

272,400

Latency (s)
BW (GB/s)

Tb-m/s

The Internet “Land”-Speed Record
Fiber-optic cable

State of the art
networking

medium
(sent 585 GB)

1800

1.13

272,400

Latency (s)
BW (GB/s)

Tb-m/s

"Never underestimate the
bandwidth of a station
wagon full of tapes hurtling
down the highway."

-- Andrew S. Tanenbaum

The Internet “Land”-Speed Record
Fiber-optic cable

State of the art
networking

medium
(sent 585 GB)

1800

1.13

272,400

Latency (s)
BW (GB/s)

Tb-m/s

3.5 in Hard drive
3 TB

0.68 kg

The Internet “Land”-Speed Record
Fiber-optic cable

State of the art
networking

medium
(sent 585 GB)

1800

1.13

272,400

Latency (s)
BW (GB/s)

Tb-m/s

Cargo
Speed

Subaru Outback

Sensible station
wagon

183 kg
119 MPH

The Internet “Land”-Speed Record
Fiber-optic cable

State of the art
networking

medium
(sent 585 GB)

1800

1.13

272,400

Latency (s)
BW (GB/s)

Tb-m/s

Cargo
Speed

563,984

0.0014

344,690

Subaru Outback

Sensible station
wagon

183 kg
119 MPH

The Internet “Land”-Speed Record
Fiber-optic cable

State of the art
networking

medium
(sent 585 GB)

1800

1.13

272,400

Latency (s)
BW (GB/s)

Tb-m/s

Cargo
Speed

563,984

0.0014

344,690

Subaru Outback

Sensible station
wagon

183 kg
119 MPH

B1-B

Supersonic
bomber

25,515 kg
950 MPH

The Internet “Land”-Speed Record
Fiber-optic cable

State of the art
networking

medium
(sent 585 GB)

1800

1.13

272,400

Latency (s)
BW (GB/s)

Tb-m/s

Cargo
Speed

563,984

0.0014

344,690

70,646

1.6

382,409,815

Subaru Outback

Sensible station
wagon

183 kg
119 MPH

B1-B

Supersonic
bomber

25,515 kg
950 MPH

The Internet “Land”-Speed Record
Fiber-optic cable

State of the art
networking

medium
(sent 585 GB)

1800

1.13

272,400

Latency (s)
BW (GB/s)

Tb-m/s

Cargo
Speed

563,984

0.0014

344,690

70,646

1.6

382,409,815

Subaru Outback

Sensible station
wagon

183 kg
119 MPH

B1-B

Supersonic
bomber

25,515 kg
950 MPH

Hellespont
Alhambra

World’s largest
supertanker

400,975,655 kg

18.9 MPH

The Internet “Land”-Speed Record
Fiber-optic cable

State of the art
networking

medium
(sent 585 GB)

1800

1.13

272,400

Latency (s)
BW (GB/s)

Tb-m/s

Cargo
Speed

563,984

0.0014

344,690

1,587,301

1114.5

 267,000,000,000a

70,646

1.6

382,409,815

Subaru Outback

Sensible station
wagon

183 kg
119 MPH

B1-B

Supersonic
bomber

25,515 kg
950 MPH

Hellespont
Alhambra

World’s largest
supertanker

400,975,655 kg

18.9 MPH

Metric: Power

• Energy: measured in Joules
• Power: rate of energy consumption

Example:
• System A: higher peak

power
• System B: lower peak power

Metric: Price

The importance is self-explanatory.

Derived Metrics

Derived Metrics

Often we care about multiple metrics at once.

• Examples (bigger is better):
• Bandwidth per dollar (e.g., in networking (GB/s)/$)
• Bandwidth/Watt (e.g., in memory systems (GB/s)/W)
• Work/Joule (i.e., instructions/Joule)
• In general: multiply by bigger-is-better metrics, divide by

smaller-is-better.
• Examples (smaller is better):

• Cycles/instruction (i.e., time per work)
• Latency × Energy — “Energy Delay Product”
• In general: multiply by smaller-is-better metrics, divide by

bigger-is-better.

Derived Metric: Energy-Delay

• Mobile systems must balance latency (delay) and battery
(energy) usage for computation.

• The energy-delay product (EDP) is a smaller-is-better metric.
• Base units: delay in seconds; energy in Joules
• EDP units: (Joules)(s)

• Some use Energy× Delay2 instead.

What’s the Right Metric?

There is no universally correct metric! In fact, you can make up
any metric you want to evaluate computer systems.

• Latency for compiling the Linux kernel using GCC.
• Latency for compiling “hello world” in Rust.
• Frames per second at max settings in Cyberpunk 2077.
• (DB transactions/second)/$.

• The right metric depends on the situation.
• What does the computer need to accomplish?
• What constraints is it under?

• Usually some (relatively simple) combination of the metrics
we’ve already discussed.

• We will mostly focus on performance (latency and/or
bandwidth)

Now we have metrics, how do we compare
different architectures?

Benchmarks

Benchmarks: Make Comparable Measurements

• A benchmark suite is a set of programs that are
representative of a set of problems.
• Server computing (SPECINT)
• Scientific computing (SPECFP)
• Geekbench (Mobile phones)

• There is no “best” benchmark suite because there are so
many different problems!

• Real software performance may not match the benchmark,
because the benchmark is only a subset of problems!

Classes of Benchmarks

• Microbenchmarks measure one feature of a system.
• For example, memory accesses or communication speed

• Kernels measure the most compute-intensive part of
applications

• Full application benchmarks measure the performance of a
full application
• SpecINT and SpecFP (for servers)
• Other suites for databases, web servers, graphics, …

SPECINT 2006

21

Application Language Description
400.perlbench C PERL Programming Language

401.bzip2 C Compression
403.gcc C C Compiler
429.mcf C Combinatorial Optimization

445.gobmk C AI: go
456.hmmer C Search Gene Sequence
458.sjeng C AI: chess

462.libquantum C Quantum Computing
464.h264ref C Video Compression

471.omnetpp C++ Discrete Event Simulation
473.astar C++ Path-finding Algorithms

483.xalancbmk C++ XML Processing

• In what ways are these not representative?

• Despite all that, benchmarks are quite useful.
• e.g., they allow long-term performance comparisons

SPECINT 2006

22

 1

 10

 100

 1000

 10000

 100000

 1990 1995 2000 2005 2010 2015

R
el

at
iv

e
Pe

rfo
rm

an
ce

Year

specINT95 Perf
specINT2000 Perf
specINT2006 Perf

The CPU Performance Equation

The Performance Equation (PE)

Problem: We would like to model how architecture impacts
performance (latency).

Solution: We need a way to quantify performance in terms of
architectural parameters.

• Instruction Count — The number of instructions the CPU
executes.

• Cycles per instruction — The ratio of cycles required to
execute the program to the number of instructions executed.

• Cycle time — The length of a clock cycle in seconds

The first fundamental theorem of computer architecture:

Latency = Instruction Count× Cycles/Instruction× Seconds/Cycle
L = IC× CPI× CT

The PE as a Mathematical Model

Latency = Instruction Count× Cycles/Instruction× Seconds/Cycle

• The PE models the real computer system!
• Latency changes linearly with IC, CPI, and CT

• We can make some inferences from this fact. Namely, there
must be several ways to improve performance
• Reduce IC, reduce CPI, or reduce CT

• We can also use this to evaluate potential trade-offs
• Reducing CT by 50% and increasing CPI by 2 gives us a net

win (assuming that CPI was > 2 in the original system).

Reducing Cycle Time

• Cycle time is a function of the processor’s design.
• If the design does less work during a clock cycle, it’s cycle time

will be shorter.
• We will revisit this when we discuss pipelining.

• Cycle time is a function of process technology.
• If we scale a fixed design to a more advanced process

technology, it’s clock speed will go up.
• However, clock rates aren’t increasing much, due to power

problems.
• Cycle time is a function of manufacturing variation.

• Manufacturers “bin” individual CPUs by how fast they can run.
• The more you pay, the faster your chip will run.

The Clock Speed Corollary

Latency = Instruction Count× Cycles/Instruction× Seconds/Cycle

• We use clock speed more than second/cycle.
• Why? Consumers like bigger is better metrics!
• Clock speed is measured in Hz (cycles, just like physics).

Normally, there’s a metric prefix (MHz, GHz, etc.).
• x Hz ⇒ 1

x seconds per cycle
• 2.5 GHz ⇒ 1

2.5×109s seconds (0.4ns) per cycle

Latency = (Instr. Count× Cycles/Instr.)/(Clock speed in Hz)

A Note About Instruction Count

• The instruction count we care about is the dynamic
instruction count.

• “Dynamic”
• Measures the number of instructions that the program

executes at run-time.
• Example: When I ran that program, it executed 1 million

dynamic instructions.
• “Static”

• Measures the number of instructions in the compiled code
(proportional to binary size).

• Example: When I compiled that function, it produced 10 static
instructions.

Reducing Instruction Count (IC)

• There are many ways to implement a particular computation
• Algorithmic improvements (use quicksort instead of bubble

sort)
• Compiler optimizations (use -O4 with GCC)

• If one version requires executing fewer dynamic instructions,
the PE predicts it will be faster.
• Assuming that the CPI and clock speed remain the same…
• A x% reduction in IC should give a speedup of 1

1−0.01x times.
• For example, a 20% reduction in IC ⇒ 1

1−0.20 = 1.25x speedup.

Factors which Impact Instruction Count

• Different programs do different amounts of work
• Playing a DVD vs writing a word document

• The same program may do different amounts of work
depending on the input.
• Compiling a 1000-line program vs. a 100-line program

• The same program may require different numbers of
instructions on different ISAs.
• x86 has FSQRT, but in MIPS you would have to implement

that as a set of instructions
• To make a meaningful comparison between two computer

systems, they must be doing the same work.
• They may execute a different number of instructions (different

ISA or compiler), but the task they accomplish must be
exactly the same.

Cycles Per Instruction

CPI is the most complex term of the PE because many factors
impact it

• The compiler
• The program’s inputs
• The processor’s design (we will discuss this extensively)
• The memory system (we will discuss this extensively)

CPI is not the number of cycles required to execute one
instruction!

CPI is the ratio of the number of cycles required to execute a
program and that program’s IC. It is an average.

You may find 1/CPI (Instructions Per Cycle; IPC) to be more
intuitive because it emphasizes that it’s an average.

Practice: Calculating CPI: Worksheet Problem 1

Compute the CPI for the following program and machine:

• Program: 10% floating-point operations, 20% memory access
instructions, 40% branch/jump instructions, and the rest are
ALU operations.

• Machine: cycles required for each of the following operations:
• floating-point operations: 11 cycles
• memory access instructions: 50 cycles*
• branch/jump instructions: 5 cycles*
• ALU operations: 2 cycles

* We are making a few simplifying assumptions for this problem, both of these will become more complicated later.

Integer,(
19.90%(

Floa2ng(
Point,(
37.40%(

Branch,(
4.40%(

Memory
,(35.60%(

Spec%FP%2006%

Integer,(
49.10%(

Branch,(
18.80%(

Memory
,(31.90%(

Spec%INT%2006%

Instruction Mix and CPI
• Different programs need different kinds of instructions
• e.g., “Integer apps” don’t do much floating point math.

• The compiler also has some flexibility in which instructions it
uses.

• As a result the combination and ratio of instruction types that
programs execute (their instruction mix) varies.

42Spec INT and Spec FP are popular benchmark suites

Integer,(
19.90%(

Floa2ng(
Point,(
37.40%(

Branch,(
4.40%(

Memory
,(35.60%(

Spec%FP%2006%

Integer,(
49.10%(

Branch,(
18.80%(

Memory
,(31.90%(

Spec%INT%2006%

Instruction Mix and CPI
• Different programs need different kinds of instructions
• e.g., “Integer apps” don’t do much floating point math.

• The compiler also has some flexibility in which instructions it
uses.

• As a result the combination and ratio of instruction types that
programs execute (their instruction mix) varies.

42Spec INT and Spec FP are popular benchmark suites

Instruction Mix and CPI
• Instruction selections (and, therefore, instruction selection)

impacts CPI because some instructions require extra cycles to
execute

• All theses values depend on the particular implementation, not
the ISA.

43

Instruction Type Cycles

Integer +, -, |, &, branches 1

Integer multiply 3-5

integer divide 11-100
Floating point +, -, *, etc. 3-5

Floating point /, sqrt 7-27

Loads and Stores 1-100s

These values are for Intel’s Nehalem processor

Instruction Mix and CPI
• Instruction selections (and, therefore, instruction selection)

impacts CPI because some instructions require extra cycles to
execute

• All theses values depend on the particular implementation, not
the ISA.

43

Instruction Type Cycles

Integer +, -, |, &, branches 1

Integer multiply 3-5

integer divide 11-100
Floating point +, -, *, etc. 3-5

Floating point /, sqrt 7-27

Loads and Stores 1-100s

These values are for Intel’s Nehalem processor

Program Inputs and CPI

• Different inputs make programs behave differently
• They execute different functions.
• The branches will go in different directions.
• These all affect the instruction mix (and instruction count) of

the program.

Practice: Comparing Similar Systems: Worksheet Problem 2

Latency = Instruction Count× Cycles/Instruction× Seconds/Cycle

Assume that we are running the same program on two different
systems. What is the speedup of System B relative to System
A?

• System A:
• Instruction count: 3 million
• Cycles per instruction: 4.7
• Seconds per cycle: 1ns

• System B:
• Instruction count: 4 million
• Cycles per instruction: 2.3
• Seconds per cycle: 1ns

Practice: Comparing Similar Systems: Worksheet Problem 3

Latency = Instruction Count× Cycles/Instruction× Seconds/Cycle

Assume that we are running the same program on two different
systems. What is the speedup of System B relative to System
A?

• System A:
• Instructions per cycle: 0.4
• Clock speed: 3.7 GHz

• System B:
• Instructions per cycle: 0.3
• Clock speed: 4.0 GHz

Comparing Similar Systems

• Often, we will compare systems that are partially the same.
• Example: different CPUs, but the same program.
• Example: same CPU, different programs.

• In these cases, many terms of the PE are not relevant.
• If the CPU doesn’t change, neither does CT, so latency can

measured in cycles:

((((((Instructions× Cycles
(((((Instruction = Cycles

• If the workload is fixed, IC doesn’t change, so performance can
be measured in Instructions/Second:

1/
(

���Cycles
Instruction × Seconds

���Cycle

)
• If the workload and clock rate are fixed, the latency is

equivalent to CPI (smaller-is-better).

Comparing Similar Systems

Another way of thinking about this is that you are using the
speedup equation, but not comparing anything yet.

Speedup =
Latencyold
Latencynew

Example: if we have the same CPU, the CT is constant
(CTold = CTnew).

Speedup =
Latencyold
Latencynew

=
ICold × CPIold ×���CTold
ICnew × CPInew ×����CTnew

Warning
You can only ignore terms in the PE if they are identical across
two systems.

Practice: Comparing Similar Systems: Worksheet Problem 4

You have a processor that runs at 4.9 GHz with a CPI of 1.4.

You can either spend $10,000 to hire a CS@Mines graduate for two
weeks to optimize your algorithm so that it requires 37% less
instructions to execute as before (assume same CPI).

Or, you can spend $1,500 on a new CPU that runs at 5.3 GHz
(with the same CPI).

Which option gives you the biggest performance gain per
dollar spent?

Dropping Terms from the PE

• The PE is built to make it easy to focus on aspects of latency
by dropping terms.

• Example: CPI× CT
• Seconds/Instruction = IS (instruction latency)
• 1/IS = Inst/Sec or M(ega)IPS, FLOPS
• Could also be called “raw speed”
• CPI is still in terms of some particular application or

instruction mix.
• Example: IC × CPI

• Clock-speed independent latency (cycle count)

Treating PE Terms Differently

The PE also allows us to apply “rules of thumb” and/or make
projections.

Example: “CPI in modern processors is between 1 and 2”

• L = IC× CPIguess × CT
• In this case, IC corresponds to a particular application, but

CPIguess is an estimate.

Example: The new processor will reduce CPI by 50% and reduce
CT by 50%.

• L = IC× 0.5CPI× 0.5CT
• Now CPI and CT are both estimates, and the resulting L is

also an estimate. IC may not be an estimate.

Abusing the PE

• Beware of Guaranteed Not To Exceed (GTNE) metrics
• Example: “Processor X has a speed of 10 GOPS (giga

insts/sec)”
• This is equivalent to saying that the average instruction

latency is 0.1ns.
• But no workload is given!
• Does this means that L = IC * 0.1ns? Probably not!

• The above claim (probably) means that the processor is
capable of 10 GOPS under perfect conditions
• The vendor promises it will never go faster.
• That’s very different that saying how fast it will go in practice.

• It may also mean they get 10 GOPS on an industry standard
benchmark

The top500 List

You may have wondered, “what is the fastest computer in the
world?”

top500.org publishes a list of the fastest 500 computers in the
world.

They report floating point operations per second (FLOPS). Thuy
use the linpack benchmark suite (dense matrix computation)

The top machine now is Supercomputer Fugaku in Japan.

Is it meaningful or fair? There is a new list graph500.org which
“complement[s] the Top 500 with data intensive applications”.

https://top500.org
https://graph500.org/

