
CSCI 564 Advanced Computer Architecture
Lecture 14: Consistency and Coherence

Dr. Bo Wu (with modifications by Sumner Evans)
May 7, 2021

Colorado School of Mines

Memory Ordering in
Multiprocessors

Ordering of Operations
• Operations: A, B, C, D

– In what order should the hardware execute (and report the results of)
these operations?

• A contract between programmer and microarchitect
– Specified by the ISA

• Preserving an “expected” (more accurately, “agreed upon”) order
simplifies programmer’s life
– Ease of debugging; ease of state recovery, exception handling

• Preserving an “expected” order usually makes the hardware
designer’s life difficult
– Especially if the goal is to design a high performance processor: Recall

reorder buffer in out of order execution and their complexity

Memory Ordering in a Single
Processor

• Specified by the von Neumann model
• Sequential order

– Hardware executes the load and store operations in the order specified
by the sequential program

• Out-of-order execution does not change the semantics
– Hardware retires (reports to software the results of) the load and store

operations in the order specified by the sequential program

• Advantages: 1) Architectural state is precise within an execution. 2)
Architectural state is consistent across different runs of the program
à Easier to debug programs

• Disadvantage: Preserving order adds overhead, reduces
performance, increases complexity, reduces scalability

Memory Ordering in a MIMD
Processor

• Each processor’s memory operations are in sequential order with
respect to the “thread” running on that processor (assume each
processor obeys the von Neumann model)

• Multiple processors execute memory operations concurrently

• How does the memory see the order of operations from all
processors?
– In other words, what is the ordering of operations across different

processors?

Why Does This Even Matter?

• Ease of debugging
– It is nice to have the same execution done at different times to have

the same order of execution à Repeatability

• Correctness
– Can we have incorrect execution if the order of memory operations is

different from the point of view of different processors?

• Performance and overhead
– Enforcing a strict “sequential ordering” can make life harder for the

hardware designer in implementing performance enhancement
techniques (e.g., OoO execution, caches)

When Could Order Affect
Correctness?

• When protecting shared data

Protecting Shared Data
• Threads are not allowed to update shared data concurrently

– For correctness purposes

• Accesses to shared data are encapsulated inside
critical sections or protected via synchronization constructs (locks,
semaphores, condition variables)

• Only one thread can execute a critical section at
a given time
– Mutual exclusion principle

• A multiprocessor should provide the correct execution of
synchronization primitives to enable the programmer to protect shared
data

Supporting Mutual Exclusion
• Programmer needs to make sure mutual exclusion

(synchronization) is correctly implemented
– We will assume this
– But, correct parallel programming is an important topic
– Reading: Dijkstra, “Cooperating Sequential Processes,” 1965.

• http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
• See Dekker’s algorithm for mutual exclusion

• Programmer relies on hardware primitives to support correct
synchronization

• If hardware primitives are not correct (or unpredictable),
programmer’s life is tough

• If hardware primitives are correct but not easy to reason about
or use, programmer’s life is still tough

Protecting Shared Data

10

Assume P1 is in critical section.
Intuitively, it must have executed A,
which means F1 must be 1 (as A happens before B),
which means P2 should not enter the critical section.

A Question
• Can the two processors be in the critical section at the same time

given that they both obey the von Neumann model?
• Answer: yes

12

Both Processors in Critical Section

13

14

A appeared to happen
before X

X appeared to happen
before A

How Can We Solve The Problem?

• Idea: Sequential consistency

• All processors see the same order of operations to memory
• i.e., all memory operations happen in an order (called the global

total order) that is consistent across all processors

• Assumption: within this global order, each processor’s operations
appear in sequential order with respect to its own operations.

Sequential Consistency

n Lamport, “How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs,” IEEE Transactions on Computers, 1979

• A multiprocessor system is sequentially consistent if:
– the result of any execution is the same as if the operations of all the

processors were executed in some sequential order
AND
– the operations of each individual processor appear in this sequence in the

order specified by its program

• This is a memory ordering model, or memory model
– Specified by the ISA

Programmer’s Abstraction

• Memory is a switch that services one load or store at a time from
any processor

• All processors see the currently serviced load or store at the same
time

• Each processor’s operations are serviced in program order

MEMORY

P1 P3P2 Pn

Sequentially Consistent Operation
Orders

• Potential correct global orders (all are correct):

• A B X Y
• A X B Y
• A X Y B
• X A B Y
• X A Y B
• X Y A B

• Which order (interleaving) is observed depends on implementation
and dynamic latencies

Consequences of Sequential
Consistency

• Corollaries

1. Within the same execution, all processors see the same global order of
operations to memory

à No correctness issue
à Satisfies the “happened before” intuition

2. Across different executions, different global orders can be observed (each
of which is sequentially consistent)

à Debugging is still difficult (as order changes across runs)

Issues with Sequential Consistency?

• Nice abstraction for programming, but two issues:
– Too conservative ordering requirements
– Limits the aggressiveness of performance enhancement techniques

• Is the total global order requirement too strong?
– Do we need a global order across all operations and all processors?
– How about a global order only across all stores?

• Total store order memory model; unique store order model
– How about a enforcing a global order only at the boundaries of

synchronization?
• Relaxed memory models
• Acquire-release consistency model

Issues with Sequential Consistency?

• Performance enhancement techniques that could make SC
implementation difficult

• Out-of-order execution
– Loads happen out-of-order with respect to each other and with respect

to independent stores à makes it difficult for all processors to see the
same global order of all memory operations

• Caching
– A memory location is now present in multiple places
– Prevents the effect of a store to be seen by other processors à makes

it difficult for all processors to see the same global order of all memory
operations

Weaker Memory Consistency

• The ordering of operations is important when the order affects
operations on shared data à i.e., when processors need to
synchronize to execute a “program region”

• Weak consistency
– Idea: Programmer specifies regions in which memory operations do not

need to be ordered
– “Memory fence” instructions delineate those regions

• All memory operations before a fence must complete before fence is
executed

• All memory operations after the fence must wait for the fence to complete
• Fences complete in program order

– All synchronization operations act like a fence

Tradeoffs: Weaker Consistency

• Advantage
– No need to guarantee a very strict order of memory operations
à Enables the hardware implementation of performance

enhancement techniques to be simpler
à Can be higher performance than stricter ordering

• Disadvantage
– More burden on the programmer or software (need to get the “fences”

correct)

• Another example of the programmer-microarchitect tradeoff

Cache Coherence

Shared Memory Model

• Many parallel programs communicate through shared memory
• Proc 0 writes to an address, followed by Proc 1 reading

– This implies communication between the two

• Each read should receive the value last written by anyone
– This requires synchronization (what does last written mean?)

• What if Mem[A] is cached (at either end)?

Proc 0
Mem[A] = 1

Proc 1
…

Print Mem[A]

Cache Coherence
• Basic question: If multiple processors cache the same block, how do

they ensure they all see a consistent state?

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

The Cache Coherence Problem

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT
load 1000

Cache Coherence: Whose
Responsibility?

• Software
– Can the programmer ensure coherence if caches are invisible to software?
– What if the ISA provided a cache flush instruction?

• FLUSH-LOCAL A: Flushes/invalidates the cache block containing address A from a
processor’s local cache.

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing address A from all
other processors’ caches.

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

• Hardware
– Simplifies software’s job
– One idea: Invalidate all other copies of block A when a processor

writes to it

A Very Simple Coherence Scheme

• Caches “snoop” (observe) each other’s write/read operations. If a
processor writes to a block, all others invalidate the block.

• A simple protocol:
n Write-through, no-

write-allocate
cache

n Actions of the local
processor on the
cache block: PrRd,
PrWr,

n Actions that are
broadcast on the
bus for the block:
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

(Non-)Solutions to Cache
Coherence

• No hardware based coherence
– Keeping caches coherent is software’s responsibility
+ Makes microarchitect’s life easier
-- Makes average programmer’s life much harder

• need to worry about hardware caches to maintain program
correctness?

-- Overhead in ensuring coherence in software

• All caches are shared between all processors
+ No need for coherence
-- Shared cache becomes the bandwidth bottleneck
-- Very hard to design a scalable system with low-latency cache

access this way

Maintaining Coherence

• Need to guarantee that all processors see a consistent value (i.e.,
consistent updates) for the same memory location

• Writes to location A by P0 should be seen by P1 (eventually), and all
writes to A should appear in some order

• Coherence needs to provide:
– Write propagation: guarantee that updates will propagate
– Write serialization: provide a consistent global order seen by all

processors

• Need a global point of serialization for this store ordering

Hardware Cache Coherence

• Basic idea:
– A processor/cache broadcasts its write/update to a memory location to

all other processors
– Another cache that has the location either updates or invalidates its

local copy

Coherence: Update vs. Invalidate

• How can we safely update replicated data?
– Option 1 (Update protocol): push an update to all copies
– Option 2 (Invalidate protocol): ensure there is only one copy

(local), update it

• On a Read:
– If local copy is Invalid, put out request
– (If another node has a copy, it returns it, otherwise memory

does)

Coherence: Update vs. Invalidate (II)

• On a Write:
– Read block into cache as before

Update Protocol:
– Write to block, and simultaneously broadcast written data and

address to sharers
– (Other nodes update the data in their caches if block is present)

Invalidate Protocol:
– Write to block, and simultaneously broadcast invalidation of

address to sharers
– (Other nodes invalidate block in their caches if block is present)

Update vs. Invalidate Tradeoffs

• Which do we want?
– Write frequency and sharing behavior are critical

• Update
+ If sharer set is constant and updates are infrequent, avoids the cost of

invalidate-reacquire (broadcast update pattern)
- If data is rewritten without intervening reads by other cores, updates

were useless
- Write-through cache policy è bus becomes bottleneck

• Invalidate
+ After invalidation broadcast, core has exclusive access rights
+ Only cores that keep reading after each write retain a copy
- If write contention is high, leads to ping-ponging (rapid mutual

invalidation-reacquire)

Two Cache Coherence Methods

– How do we ensure that the proper caches are updated?

– Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]
• Bus-based, single point of serialization for all memory requests
• Processors observe other processors’ actions

– E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this and
invalidates its own copy of A

– Directory [Censier and Feautrier, IEEE ToC 1978]
• Single point of serialization per block, distributed among nodes
• Processors make explicit requests for blocks
• Directory tracks which caches have each block
• Directory coordinates invalidation and updates

– E.g.: P1 asks directory for exclusive copy, directory asks P0 to invalidate, waits for
ACK, then responds to P1

Snoopy Cache Coherence

Snoopy Cache Coherence

• Idea:
– All caches “snoop” all other caches’ read/write requests and keep the

cache block coherent
– Each cache block has “coherence metadata” associated with it in the

tag store of each cache

• Easy to implement if all caches share a common bus
– Each cache broadcasts its read/write operations on the bus
– Good for small-scale multiprocessors
– What if you would like to have a 1000-node multiprocessor?

42

A Simple Snoopy Cache Coherence
Protocol

• Caches “snoop” (observe) each other’s write/read operations
• A simple protocol:

n Write-through, no-
write-allocate
cache

n Actions of the local
processor on the
cache block: PrRd,
PrWr,

n Actions that are
broadcast on the
bus for the block:
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

A More Sophisticated Protocol: MSI
• Extend metadata per block to encode three states:

– M(odified): cache line is the only cached copy and is dirty
– S(hared): cache line is potentially one of several cached copies
– I(nvalid): cache line is not present in this cache

• Read miss makes a Read request on bus, transitions to S
• Write miss makes a ReadEx request, transitions to M state
• When a processor snoops ReadEx from another writer, it must

invalidate its own copy (if any)
• SàM upgrade can be made without re-reading data from memory (via

Invalidations)

MSI State Machine

M

S I

BusRdX/--

PrRd/--
BusRd/--

PrRd/BusRd

PrWr/BusRdX

PrWr/BusRdX

BusRdX/Flush
PrRd/--
PrWr/--

BusRd/Flush

ObservedEvent/Action

The Problem with MSI

• A block is in no cache to begin with
• Problem: On a read, the block immediately goes to “Shared” state

although it may be the only copy to be cached (i.e., no other
processor will cache it)

• Why is this a problem?
– Suppose the cache that read the block wants to write to it at some

point
– It needs to broadcast “invalidate” even though it has the only cached

copy!
– If the cache knew it had the only cached copy in the system, it could

have written to the block without notifying any other cache à saves
unnecessary broadcasts of invalidations

The Solution: MESI

• Idea: Add another state indicating that this is the only cached copy
and it is clean.
– Exclusive state

• Block is placed into the exclusive state if, during BusRd, no other
cache had it
– Snooping caches assert the signal if they also have a copy

• Silent transition ExclusiveàModified is possible on write!

• MESI is also called the Illinois protocol
• Papamarcos and Patel, “A low-overhead coherence solution for

multiprocessors with private cache memories,” ISCA 1984.

48

49

MESI State Machine

PrWr/BusRdX

PrRd (S’)/BusRd

PrRd (S)/BusRd

PrWr/BusRdX
PrWr/--

BusRd/ $ Transfer

BusRd/Flush

BusRdX/Flush (all incoming)

MESI State Machine

M

E

S

I

The Problem with MESI

• Observation: Shared state requires the data to be clean
– i.e., all caches that have the block have the up-to-date copy and

so does the memory
• Problem: Need to write the block to memory when

BusRd happens when the block is in Modified state

• Why is this a problem?
– Memory can be updated unnecessarily à some other processor

may want to write to the block again

Improving on MESI

• Idea 1: Do not transition from MàS on a BusRd. Invalidate the copy
and supply the modified block to the requesting processor directly
without updating memory

• Idea 2: Transition from MàS, but designate one cache as the owner
(O), who will write the block back when it is evicted
– Now “Shared” means “Shared and potentially dirty”
– This is a version of the MOESI protocol

Directory Based
Cache Coherence

Directory Based Coherence
• Idea: A logically-central directory keeps track of where the copies of each

cache block reside. Caches consult this directory to ensure coherence.

• An example mechanism:
– For each cache block in memory, store P+1 bits in directory

• One bit for each cache, indicating whether the block is in cache
• Exclusive bit: indicates that a cache has the only copy of the block and can update it

without notifying others
– On a read: set the cache’s bit and arrange the supply of data
– On a write: invalidate all caches that have the block and reset their bits
– Have an “exclusive bit” associated with each block in each cache (so that the

cache can update the exclusive block silently)

Directory Based Coherence
Example (I)

Directory Based Coherence
Example (I)

56

Snoopy Cache vs. Directory
Coherence

• Snoopy Cache
+ Miss latency (critical path) is short: request à bus transaction to mem.
+ Global serialization is easy: bus provides this already (arbitration)
+ Simple: can adapt bus-based uniprocessors easily
- Relies on broadcast messages to be seen by all caches (in same order):
à single point of serialization (bus): not scalable
à need a virtual bus (or a totally-ordered interconnect)

• Directory
- Adds indirection to miss latency (critical path): request à dir. à mem.
- Requires extra storage space to track sharer sets

• Can be approximate (false positives are OK)
- Protocols and race conditions are more complex (for high-performance)
+ Does not require broadcast to all caches
+ Exactly as scalable as interconnect and directory storage

(much more scalable than bus)

False Sharing

Parallelism: Expectation is
awesome

R
un

tim
e

(s
)

0

10

20

30

40

50

60

70

80

90

1 2 4 8
Number of threads

n
Expectation

Parallel Program

int count[8];
int W;
void increment(int S)
{
for(in=S; in<S+W; in++)
for(j=0; j<1M; j++)
count[in]++;

}

int main(int THREADS) {
W=8/THREADS;
for(i=0; i<8; i+=W)
spawn(increment,i);

}

Reality is awful

False sharing slows the program by 13X

R
un

tim
e

(s
)

Parallel Program
n Realityint count[8];

int W;
void increment(int S)
{
for(in=S; in<S+W; in++)
for(j=0; j<1M; j++)
count[in]++;

}

int main(int THREADS) {
W=8/THREADS;
for(i=0; i<8; i+=W)
spawn(increment,i);

}

False
sharing

0

20

40

60

80

100

120

140

1 2 4 8
Number of threads

n
Expectation

Thread 1

Main Memory

Core 1

Thread 2

Core 2

Cache Cache

Invalidate

Cache line: basic unit of data transfer

False Sharing Causes Performance Problems

Thread 1 Thread 2

Cache Cache

Invalidate

Interleaved accesses cause cache invalidations

Main Memory

Core 1 Core 2

False Sharing Causes Performance Problems

