
CSCI 564 Advanced Computer Architecture
Lecture 12: Vector Processing and SIMD

Dr. Bo Wu
April 23, 2021

Colorado School of Mines

Flynn’s Taxonomy of Computers

• Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

• SISD: Single instruction operates on single data element
• SIMD: Single instruction operates on multiple data elements

– Array processor
– Vector processor

• MISD: Multiple instructions operate on single data element
• MIMD: Multiple instructions operate on multiple data elements

(multiple instruction streams)
– Multiprocessor
– Multithreaded processor

Data Parallelism
• Concurrency arises from performing the same operations on

different pieces of data
– Single instruction multiple data (SIMD)
– E.g., dot product of two vectors

• Contrast with data flow
– Concurrency arises from executing different operations in parallel

(in a data driven manner)

SIMD Processing

• Single instruction operates on multiple data elements
– In time or in space

• Multiple processing elements

• Time-space duality
– Array processor: Instruction operates on multiple data elements at the

same time
– Vector processor: Instruction operates on multiple data elements in

consecutive time steps

Array vs. Vector Processors
ARRAY PROCESSOR VECTOR PROCESSOR

LD VR ß A[3:0]
ADD VR ß VR, 1
MUL VR ß VR, 2
ST A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

SIMD Array Processing vs. VLIW

• VLIW

SIMD Array Processing vs. VLIW

Vector Processors

• A vector is a one-dimensional array of numbers
• Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)
C[i] = (A[i] + B[i]) / 2

• A vector processor is one whose instructions operate on vectors
rather than scalar (single data) values

• Basic requirements
– Need to load/store vectors à vector registers (contain vectors)
– Need to operate on vectors of different lengths à vector length

register (VLEN)
– Elements of a vector might be stored apart from each other in

memory à vector stride register (VSTR)
• Stride: distance between two elements of a vector

Vector Processors (II)

• A vector instruction performs an operation on each element in
consecutive cycles
– Vector functional units are pipelined
– Each pipeline stage operates on a different data element

• Vector instructions allow deeper pipelines
– No intra-vector dependencies
– No control flow within a vector
– Known stride allows prefetching of vectors into cache/memory

Vector Processor Advantages
+ No dependencies within a vector

– Pipelining, parallelization work well
– Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work
– Reduces instruction fetch bandwidth

+ Highly regular memory access pattern
– Interleaving multiple banks for higher memory bandwidth
– Prefetching

+ No need to explicitly code loops
– Fewer branches in the instruction sequence

Vector Processor Disadvantages
-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Vector Processor Limitations
-- Memory (bandwidth) can easily become a bottleneck, especially if

1. compute/memory operation balance is not maintained
2. data is not mapped appropriately to memory banks

Vector Processing in More Depth

Vector Registers
• Each vector data register holds N M-bit values
• Vector control registers: VLEN, VSTR, VMASK
• Maximum VLEN can be N

– Maximum number of elements stored in a vector register
• Vector Mask Register (VMASK)

– Indicates which elements of vector to operate on
– Set by vector test instructions

• e.g., VMASK[i] = (Vk[i] == 0)

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide

Vector Functional Units
• Use deep pipeline (=> fast clock) to

execute element operations
• Simplifies control of deep pipeline

because elements in vector are
independent

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

Vector Machine Organization (CRAY-1)
• CRAY-1
• Russell, “The CRAY-1

computer system,” CACM
1978.

• Scalar and vector modes
• 8 64-element vector

registers
• 64 bits per element
• 16 memory banks
• 8 64-bit scalar registers

Memory Banking
• Memory is divided into banks that can be accessed independently;

banks share address and data buses
• Can start and complete one bank access per cycle
• Can sustain N parallel accesses if they go to different banks

Bank
0

Bank
1

MDR MAR

Bank
2

Bank
15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Vector Memory System

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base StrideVector Registers

Memory Banks

Address
Generator

Scalar Code Example
• For I = 0 to 49

– C[i] = (A[i] + B[i]) / 2

• Scalar code (instruction and its latency)
MOVI R0 = 50 1
MOVA R1 = A 1
MOVA R2 = B 1
MOVA R3 = C 1

X: LD R4 = MEM[R1++] 11 ;autoincrement addressing
LD R5 = MEM[R2++] 11
ADD R6 = R4 + R5 4
SHFR R7 = R6 >> 1 1
ST MEM[R3++] = R7 11
DECBNZ --R0, X 2 ;decrement and branch if NZ

304 dynamic instructions

Scalar Code Execution Time
• Scalar execution time on an in-order processor with 1 bank

– First two loads in the loop cannot be pipelined: 2*11 cycles
– 4 + 50*40 = 2004 cycles

• Scalar execution time on an in-order processor with 16 banks (word-
interleaved: consecutive words are stored in consecutive banks)
– First two loads in the loop can be pipelined
– 4 + 50*30 = 1504 cycles

• Why 16 banks?
– 11 cycle memory access latency
– Having 16 (>11) banks ensures there are enough banks to overlap enough

memory operations to cover memory latency

Vectorizable Loops

• A loop is vectorizable if each iteration is independent of any other
• For I = 0 to 49

– C[i] = (A[i] + B[i]) / 2
• Vectorized loop:

MOVI VLEN = 50 1
MOVI VSTR = 1 1
VLD V0 = A 11 + VLN - 1
VLD V1 = B 11 + VLN – 1
VADD V2 = V0 + V1 4 + VLN - 1
VSHFR V3 = V2 >> 1 1 + VLN - 1
VST C = V3 11 + VLN – 1

7 dynamic instructions

Conditional Operations in a Loop
• What if some operations should not be executed on a vector (based on a

dynamically-determined condition)?
loop: if (a[i] != 0) then b[i]=a[i]*b[i]

goto loop

• Idea: Masked operations
– VMASK register is a bit mask determining which data element should not be

acted upon
VLD V0 = A
VLD V1 = B
VMASK = (V0 != 0)
VMUL V1 = V0 * V1
VST B = V1

– Does this look familiar? This is essentially predicated execution.

Another Example with Masking
for (i = 0; i < 64; ++i)

if (a[i] >= b[i]) then c[i] = a[i]
else c[i] = b[i]

A B VMASK
1 2 0
2 2 1
3 2 1
4 10 0
-5 -4 0
0 -3 1
6 5 1
-7 -8 1

Steps to execute loop

1. Compare A, B to get
VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C

Masked Vector Instructions

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation
– scan mask vector and only execute

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
– execute all N operations, turn off

result writeback according to mask

Vector/SIMD Processing Summary

• Vector/SIMD machines are good at exploiting regular data-level
parallelism
– Same operation performed on many data elements
– Improve performance, simplify design (no intra-vector dependencies)

• Performance improvement limited by vectorizability of code
– Scalar operations limit vector machine performance
– Amdahl’s Law
– CRAY-1 was the fastest SCALAR machine at its time!

• Many existing ISAs include (vector-like) SIMD operations
– Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

