
CSCI 564 Advanced Computer Architecture
Lecture 05: Cache Introduction

Dr. Bo Wu (with modifications by Sumner Evans)
March 3, 2021

Colorado School of Mines



Why do we need the memory
hierarchy?



Processor vs. Memory Performance

Page 73

• 1980: no cache in microprocessor
• 1995: 2-level cache



Really, How Bad Can it Be?



Memory’s Impact

M = % of the instructions which are memory operations
Mlat(cycles) = average memory latency

CPIbase = base CPI with single-cycle data memory

Then, CPItot = CPIbase + M × Mlat.

Example: CPIbase = 1; M = 0.2; Mlat = 240 cycles

CPItot = CPIbase + M × Mlat = 1 + 0.2 × 240 cycles = 49

Which means that Speedup = 1
49 = 0.02 which results in a 98%

drop in performance.

Remember: Amdahl’s Law does not bound slowdown! Poor
memory performance can make your program arbitrarily slow!



Why Are Registers and Cache Fast?



Implementing a Register File



Implementing a Register File

Smarter Register File

https://stackoverflow.com/questions/22418555/test-bench-of-a-32x8-register-file-vhdl

https://stackoverflow.com/questions/22418555/test-bench-of-a-32x8-register-file-vhdl


Why is Cache Fast?

Registers and cache are built on SRAM (Static Random Access
Memory) technology.

• Not dense
• Bandwidth 1

• L1 Cache — 210 GB/s
• L2 Cache — 80 GB/s

Main memory is built on DRAM (Dynamic Random Access
Memory) technology

• Needs to be refreshed periodically to persist data.
• Very dense
• Bandwidth of DDR4 — 25.6 GB/s (Dual In-line Memory

Module)
1https://www.forrestthewoods.com/blog/memory-bandwidth-napkin-math/

https://www.forrestthewoods.com/blog/memory-bandwidth-napkin-math/


What does “Dense” Mean?

Di Carlo, Stefano & Prinetto, Paolo. (2010). Models in Memory Testing,
From functional testing to defect-based testing.



SRAM Everywhere?

OK, so cache is fast, but why don’t we build main memory with
SRAM?

SRAM is much more expensive than DRAM!



The Memory Hierarchy



The Memory Hierarchy

• Bandwidth: on-chip ≫ off-chip



The Memory Hierarchy

Page 72

• On a data access instruction:
• if the data is in fast memory → low-latency access to SRAM.
• if the data is not in fast memory → high-latency access to

DRAM.
• Memory hierarchies only work if the small, fast memory

actually stores data that is reused by the processor.



The Principle of Locality

Locality is the tendency of data accesses to be predictable. There
are two kinds of locality:

1. Spacial Locality: The program is likely to access data that is
close to data it has accessed already.

2. Temporal Locality: The program is likely to access the same
data repeatedly.



Evidence of Locality



Locality in Action

Label each of the following accesses with whether it exhibits
temporal locality, spacial locality, or neither.

• 1 — n
• 2 — s
• 3 — s
• 10 — n
• 4 — s
• 1800 — n
• 11 — s
• 30 — n
• 1 — t
• 2 — s,t

• 3 — s,t
• 4 — s,t
• 10 — s,t
• 190 — n
• 11 — s,t
• 30 — t
• 12 — s
• 13 — s
• 182 — n
• 1004 — n



Caches Exploit Both Types of Locality

http://www.cs.umd.edu/~meesh/411/CA-online/chapter/memory-hierarchy-design-basics/index.html

• Caches exploit temporal locality by remembering the
contents of recently accessed locations.

• Caches exploit spacial locality by fetching blocks of data
around recently accessed locations.

http://www.cs.umd.edu/~meesh/411/CA-online/chapter/memory-hierarchy-design-basics/index.html


Four Fundamental Caching
Questions



Four Fundamental Caching Questions

1. Where can a block be placed in the cache? (block placement)
2. How is a block found if it is in the cache? (block

identification)
3. Which block should be replaced on a miss? (block

replacement)
4. What happens on write? (write strategy)

These questions arise because the cache is smaller than the main
memory, so we can’t store everything we might need at all times.



1. Where Can a Block be Placed in the Cache?

Given the following memory, where do we store block 12?

Three strategies for determining where to place that block:



1. Where Can a Block be Placed in the Cache?

Note that fully associative and direct mapped are just special cases
of the set-associative cache.

• A fully associative cache is just a cache where the
associativity is the same as the size of the cache.

• A direct mapped cache is just a cache where the associativity
is 1.

You may hear this referred to as an N-way set-associative cache
where N is the associativity.



Practice: Block Placement: Worksheet Problem 1

In the following diagram of a 4-way set-associative cache with 32
blocks, highlight the areas of the cache where block 17 can be
placed.



2. How is a Block Found if it is in the Cache?

Whenever a memory access happens, the address is split up into
three parts: the tag, index, and offset.

Block address Block offsetTag Index

• The index is used to find the set where a potential match may
reside.

• Then, we check if the tag is in the set in parallel.
• If it matches, check if the cache line is valid by looking at the

valid bit.
• If it matches and is valid, then the offset is used to index into

the block.



2. How is a Block Found if it is in the Cache?

https://www.sciencedirect.com/topics/computer-science/set-associative-cache

https://www.sciencedirect.com/topics/computer-science/set-associative-cache


2. Dealing with the Offset

• The cache line contains more than one byte, making the offset
necessary.



2. How Many Bits for Tag, Index, and Offset?

The number of bits required for the tag, index, and offset depends
on the cache geometry.
Cache Geometry Formulas
Let L be the # cache lines, B be the cache line size, A be the
address length (32 bits in our case), and W be the associativity.
Then,

Index bits = log2(L/W)

Offset bits = log2(B)
Tag bits = A − (Index bits + Offset bits)

For this class, always assume that A = 32 bits unless otherwise
specified.



Practice: Cache Geometry: Worksheet Problem 2

Calculate the number of bits required for the index, offset, tag for
a direct-mapped cache with 1024 cache lines and 32 bytes per
line.



Practice: Cache Geometry: Worksheet Problem 3

Calculate the number of bits required for the index, offset, and tag
for a 32 KiB direct-mapped cache with 64-byte cache lines.



Practice: Cache Geometry: Worksheet Problem 4

Calculate the number of bits required for the index, offset, and tag
for a 32 KiB cache with 2048 lines that is 4-way associative.



3. Which Block Should be Replaced on a Miss?

If the data we want isn’t in the cache, we may have to evict a line
from the cache to make room for the new data. How we make this
choice is called the cache eviction policy.

• Random — uniformly evict lines. Easy to implement!
• Least Recently Used (LRU) — evict the line that was

accessed the longest time ago.
• Prefer Clean — try to evict clean lines to avoid write-back.

(More on this in a minute.)
• Farthest further use — evict the line whose next access is

farthest in the future. This is provably optimal. It’s also
impossible to implement.



4. What Happens on Write?

When a write occurs, we have two main decisions:

1. Do we write to just the cache or to the entire memory
hierarchy?

2. Should we pull the cache line in to the cache if there’s a cache
miss?



4.1. Just Write to Cache or to the Entire Memory Hierarchy?

When we perform a write, we have two options:

1. Just update the cache.
2. Update the cache and also forward the write to lower cache

levels.

If we do not forward the write, the cache is write back since the
data must be written back on eviction (the cache line can be dirty).

Advantages: Fewer writes farther down the memory hierarchy.
Less bandwidth. Faster writes.

If we do forward the write, the cache is write through. In this
case, a cache line is never dirty.

Advantages: No write back overhead required on eviction.



4.2. Pull the Cache Line in on Write Miss?

When we perform a write and the cache line that we are writing to
is not in cache (that is, we have a write miss), we have two
options:

1. Pull in the cache line to the cache. This is called write
allocate.

2. Do not pull the cache line into the cache. This is called
no-write allocate.

Write Allocate Advantages: Exploits temporal locality. Data
written will likely be read soon, so that read will be faster.

No-Write Allocate Advantages: Fewer unnecessary evictions. If
the data is not read in the near future, the eviction is a waste.



Some Tradeoffs to Consider



The Cost of Associativity

Increasing associativity requires more tag checks.

• N-way associativity requires N parallel comparators
• This is expensive in hardware and potentially slow

This limits associativity of L1 caches to 2-8.

Larger, slower caches can be more associative.

Examples:

• Intel Nehalem processors have an 8-way L1 cache and
18-way L2 and L3 caches.

• Core 2’s L2 was 24-way.



Cache Line Size

How big should a cache line be?

• Why is bigger better?
• Exploits more spacial locality
• Large cache lines effectively prefetch data that we have not

explicitly asked for.
• Why is smaller better?

• Focuses on temporal locality
• If there is a little spacial locality, large cache lines waste space

and bandwidth.

• In practice, 32-64 bytes is pretty good for L1 caches where
space is scarce and latency is important.

• Lower level caches use 128-256 bytes.



Cache Line Size Affects Miss Rate

Page B-27



Data and Instruction Cache

Most processor shave two different caches, one for instructions (I)
and one for data (D). Why?

• Different areas of memory.
• Different access patterns.

• I-cache accesses have lots of spacial locality because most of
the time instructions are accessed sequentially.

• I-cache accesses are also predictable to the extent that
branches are predictable.

• D-cache accesses are typically less predictable.
• Not just different, but could interfere with one another!

• Sequential instruction accesses could interfere with the data
accesses.

• Separating them helps eliminate this issue.


