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The Main Memory System



The Main Memory System

• Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

• Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits

Processor
and caches

Main Memory Storage (SSD/HDD)



Memory System: A Shared Resource 
View

Storage



Demand for Memory Capacity
More cores ⇨ More concurrency ⇨ Larger working set

• Modern applications are (increasingly) data-intensive

• Many applications/virtual machines (will) share main 
memory
– Cloud computing/servers: Consolidation to improve efficiency
– Many-core CPUs: Many threads from multiple parallel applications
– Mobile: Interactive + non-interactive consolidation
– … 4

IBM Power7: 8 cores Intel SCC: 48 cores AMD Barcelona: 4 cores



Example: The Memory Capacity Gap

• Memory capacity per core expected to drop by 30% every two years
• Trends worse for memory bandwidth per core!

Core count doubling ~ every 2 years 
DRAM DIMM capacity doubling ~ every 3 years



Major Trends Affecting Main 
Memory (I)

• Need for main memory capacity, bandwidth, QoS 
increasing 
– Multi-core: increasing number of cores/agents
– Data-intensive applications: increasing demand/hunger for data
– Consolidation: Cloud computing, GPUs, mobile, heterogeneity

• Main memory energy/power is a key system design 
concern

• DRAM technology scaling is ending 



Major Trends Affecting Main 
Memory (II)

• Need for main memory capacity, bandwidth, QoS 
increasing 

• Main memory energy/power is a key system design 
concern
– IBM servers: ~50% energy spent in off-chip memory hierarchy 

[Lefurgy, IEEE Computer 2003]
– DRAM consumes power when idle and needs periodic refresh

• DRAM technology scaling is ending 



Major Trends Affecting Main 
Memory (III)

• Need for main memory capacity, bandwidth, QoS 
increasing 

• Main memory energy/power is a key system design 
concern

• DRAM technology scaling is ending 
– ITRS projects DRAM will not scale easily below X nm
– Scaling has provided many benefits: 

• higher capacity, higher density, lower cost, lower energy



The DRAM Scaling Problem
• DRAM stores charge in a capacitor (charge-based memory)

– Capacitor must be large enough for reliable sensing
– Access transistor should be large enough for low leakage and 

high retention time
– Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

• DRAM capacity, cost, and energy/power hard to scale
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Repeatedly opening and closing a row enough times within a 
refresh interval induces disturbance errors in adjacent rows 
in most real DRAM chips you can buy today

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental 
Study of DRAM Disturbance Errors,” ISCA 2014.

Evidence of the DRAM Scaling Problem



86%
(37/43)

83%
(45/54)

88%
(28/32)

A 
company

B 
company

C 
company

Up to
1.0×107 
errors 

Up to
2.7×106

errors 

Up to
3.3×105 
errors 

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental 
Study of DRAM Disturbance Errors,” ISCA 2014.

Most DRAM Modules Are At Risk



DRAM Modulex86 CPU

Y

X

loop:
  mov (X), %eax
  mov (Y), %ebx
  clflush (X)  
  clflush (Y)
  mfence
  jmp loop
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Participation Homework (25 points!)

Read: Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors.

Write: a 250 word summary of the paper and submit on
Gradescope (as a .txt or PDF, typed, not handwritten).



Main Memory in the System
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Main Memory in a Real System

This is Sumner’s custom-built desktop. You can see the large cooling element
on top of the CPU, the DRAM sticks to the right, and the NVMe SSD below.



Some Fundamental Concepts

• Physical address space
• Maximum size of main memory: total number of uniquely

identifiable locations
• Physical addressability

• Minimum size of data in memory that can be addressed
• Examples: byte-addressable, wodr-addressable, 64-bit

addressable
• Microarchitectural addressability depends on the abstraction

level of the implementation



The DRAM Subsystem: A
Bottom-Up View



DRAM Subsystem Organization

• Channel
• DIMM (Dual Inline Memory Module)
• Rank
• Chip
• Bank
• Row/Column



Memory Bank Organization
• Read access sequence:

1. Decode row address 
& drive word-lines

      2. Selected bits drive 
bit-lines
    • Entire row read

      
      3. Amplify row data
      
      4. Decode column 

address & select subset 
of row

         • Send to output
      
      5. Precharge bit-lines
        • For next access



Interleaving
• Interleaving (banking)

– Problem: a single monolithic memory array takes long to access 
and does not enable multiple accesses in parallel

– Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel

– Idea: Divide the array into multiple banks that can be accessed 
independently (in the same cycle or in consecutive cycles)

• Each bank is smaller than the entire memory storage
• Accesses to different banks can be overlapped

– A Key Issue: How do you map data to different banks? (i.e., how 
do you interleave data across banks?)



Page Mode DRAM
• A DRAM bank is a 2D array of cells: rows x columns
• A “DRAM row” is also called a “DRAM page”
• The activated row is put in a“row buffer”

• Each address is a <row,column> pair
• Access to a “closed row”

– Activate command opens row (placed into row buffer)
– Read/write command reads/writes column in the row buffer
– Precharge command closes the row and prepares the bank 

for next access
• Access to an “open row”

– No need for activate command

40
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The DRAM Chip

• Consists of multiple banks (2-16 in DRAM)
• Banks share command, address, and data busses
• The chip itself has a narrow interface (4-16 bits per read)



The DRAM Rank and Module

A DRAM rank consists of multiple chips operated together to
form a wide interface.

All chips comprising a rank are controlled at the same time.

• They all respond to a single command.
• They share address and command buses, but provide different

data.

A DRAM module consists of one or more ranks.

• For example DIMM (dual inline memory module)
• This is what you plug into your motherboard

If we have chips with 8-bit interfaces, to read 8 bytes in a single
access, we would want 8 chips in a DIMM.



A 64-bit Wide DIMM (One 
Rank)
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Chip
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Command Data



Multiple DIMMs
• Advantages:

– Enables even 
higher capacity

• Disadvantages:
– Interconnect 

complexity and 
energy 
consumption 
can be high



DRAM Channels

• 2 Independent Channels: 2 Memory Controllers 
(Above)



Generalized Memory 
Structure



Generalized Memory 
Structure



The DRAM Subsystem: A
Top-Down View



DRAM Subsystem Organization

• Channel
• DIMM (Dual Inline Memory Module)
• Rank
• Chip
• Bank
• Row/Column



The DRAM subsystem
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Breaking down a DIMM
DIMM (Dual in-line memory 

module)
Side view
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Rank

Rank 0 (Front) Rank 1 (Back)

Data <0:63>CS <0:1>Addr/Cmd

<0:63><0:63>

Memory 
channel



Breaking down a Rank
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Breaking down a Chip
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Breaking down a Bank
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DRAM Subsystem Organization

• Channel
• DIMM (Dual Inline Memory Module)
• Rank
• Chip
• Bank
• Row/Column



DRAM Subsystem Operation



Example: Transferring a cache block
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Example: Transferring a cache block
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Example: Transferring a cache block
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A 64B cache block takes 8 I/O cycles to transfer.

During the process, 8 columns are read sequentially.

. . .



How Multiple Banks/Channels Help



DRAM Bank Operation
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DRAM Scheduling



Row Buffer Management Policy

Row buffers can act as a cache within DRAM.

• Open Row: keep the row open after access
• Pro: next access might need the same row → row hit
• Con: next access might need a different row → row conflict

• Closed Row: close the row open after an access
• Pro: next access might need a different row → no row conflict
• Con: next access might need the same row → extra activation



Practice: DRAM Operation: Worksheet Problem 2

• Row buffer hit: only need to move data from row buffer to pins (~20 ns
access time)

• Empty row buffer access: must first read read the row, the move data
from row buffer to pins (~40 ns access time)

• Row buffer conflict: must first precharge the bitlines, then read the
other row, the move data from row buffer to pins (~60 ns access time)

Time of Service
Requested Time of Arrival Open Closed
X 0
Y 10
X + 1 100
X + 2 200
Y + 1 250
X + 3 300



A Modern DRAM Controller 
(I)



A Modern DRAM Controller 
(II)



DRAM Scheduling Policies

• First-come, first-served (FCFS)
• oldest request first

• First-ready, first-come, first-served (FR-FCFS)
1. Row-hit first
2. Oldest first

Goal: maximize row buffer hit rate → maximize DRAM
throughput



Trend: Many Cores on Chip
• Simpler and lower power than a single large core
• Large scale parallelism on chip

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores



(Un)expected Slowdowns with Multi-Core Systems

• What we want:
• N times the system performance with N times the cores.

• What do we get today?

Moscibroda and Mutlu, Memory performance attacks: Denial of memory
service in multi-core systems, USENIX Security 2007.
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-  Very high row buffer locality (96% hit rate)
-  Memory intensive
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How do we Solve the Problem?

• Stall-time fair memory (STFM) scheduling [Mutlu+ MICRO’07]

• Goal: threads sharing main memory should experience similar
slowdowns compared to when they are run alone → fair
scheduling

• Also improves overall system performance by ensuring cores
make “proportional” progress.

• Idea: memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to balance
the slowdowns.

Mutlu and Moscibroda, Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors, MICRO 2007.



Stall-Time Fairness in Shared DRAM Systems

• A DRAM system is fair if it equalizes the slowdown of equal-priority
threads relative to when each thread is run alone on the same system

• DRAM-related stall-time: The time a thread spends waiting for DRAM
memory

• STshared — DRAM-related stall-time when the thread runs with other
threads

• STalone — DRAM-related stall-time when the thread runs with other
threads

• Memory-slowdown = STshared/STalone — relative increase in stall time

• The Stall-Time Fair Memory scheduler (STFM) aims to equalize
memory-slowdown for interfering threads, without sacrificing
performance.

• Considers inherent DRAM performance of each thread
• Aims to allow proportional progress of threads



STFM Scheduling Algorithm

• For each thread, the DRAM controller
• Keeps track of STshared
• Estimates STalone

• Each cycle, the DRAM controller
• Computes memory slowdown for threads with legal requests
• Computes unfairness = max(slowdowns)/min(slowdowns)

• If unfairness < α, use DRAM throughput-oriented scheduling
policy

• If unfairness > α, use fairness-oriented scheduling policy
1. requests from thread with maximum slowdown first
2. row-hit first
3. oldest-first
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• Processors try to tolerate the latency of DRAM requests by 
generating multiple outstanding requests
– Memory-Level Parallelism (MLP) 
– Out-of-order execution, non-blocking caches, runahead 

execution

• Effective only if the DRAM controller actually services the 
multiple requests in parallel in DRAM banks

• Multiple threads share the DRAM controller
• DRAM controllers are not aware of a thread’s MLP

– Can service each thread’s outstanding requests serially, not 
in parallel
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Within-Batch Scheduling
• Can use any DRAM scheduling policy

– FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

• But, we also want to preserve intra-thread bank 
parallelism
– Service each thread’s requests back to back

• Scheduler computes a ranking of threads when 
the batch is formed
– Higher-ranked threads are prioritized over lower-ranked ones
– Improves the likelihood that requests from a thread are serviced in 

parallel by different banks
• Different threads prioritized in the same order across ALL banks
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How to Rank Threads within 
a Batch

• Ranking scheme affects system throughput and fairness

• Maximize system throughput
– Minimize average stall-time of threads within the batch

• Minimize unfairness (Equalize the slowdown of threads)
– Service threads with inherently low stall-time early in the batch
– Insight: delaying memory non-intensive threads results in high slowdown

• Shortest stall-time first (shortest job first) ranking
– Provides optimal system throughput [Smith, 1956]*

– Controller estimates each thread’s stall-time within the batch
– Ranks threads with shorter stall-time higher

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.
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Hardware Cost
• <1.5KB storage cost for

– 8-core system with 128-entry memory request buffer

• No complex operations (e.g., divisions)

• Not on the critical path
– Scheduler makes a decision only every DRAM cycle

Unfairness on 4-, 8-, 16-core Systems
Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]
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PAR-BS Pros and Cons

• Upsides: 
– First scheduler to address bank parallelism 

destruction across multiple threads
– Simple mechanism (vs. STFM)
– Batching provides fairness
– Ranking enables parallelism awareness

• Downsides:
– Does not always prioritize the latency-sensitive 

applications

TCM:
Thread Cluster Memory 

Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: 

Exploiting Differences in Memory Access Behavior" 
43rd International Symposium on Microarchitecture (MICRO), 

pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf) 

TCM Micro 2010 Talk
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Throughput vs. FairnessBank Parallelism of a Thread

Thread A :

Bank 0 Bank 1

Compute

Single Thread:



Bank Parallelism Interference 
in DRAM Bank 0 Bank 1

A : Compute

Baseline Scheduler:

B: Compute



Parallelism-Aware Scheduler
Bank 0 Bank 1

A :

Parallelism-aware Scheduler:

B: Compute

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute



Parallelism-Aware Batch Scheduling 
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to 

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.
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• Principle 2: Request Batching
– Group a fixed number of oldest requests 

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch
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Parallelism-Aware Batch Scheduling 
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to 

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests 

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch
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Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.



Request Batching
• Each memory request has a bit (marked) associated with it

• Batch formation:
– Mark up to Marking-Cap oldest requests per bank for each thread
– Marked requests constitute the batch
– Form a new batch when no marked requests are left

• Marked requests are prioritized over unmarked ones
– No reordering of requests across batches: no starvation, high fairness

• How to prioritize requests within a batch?



Within-Batch Scheduling
• Can use any DRAM scheduling policy

– FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

• But, we also want to preserve intra-thread bank 
parallelism
– Service each thread’s requests back to back



How to Rank Threads within 
a Batch

• Ranking scheme affects system throughput and fairness

• Maximize system throughput



• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First 
Ranking
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Unfairness on 4-, 8-, 16-core Systems
Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]
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• Does distributed refresh reduce refresh impact on 

energy?
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A batch of rows are 
periodically refreshed
via the auto-refresh command

Refresh Overhead: 
Performance

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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 Problem: No support in DRAM for different refresh rates per row
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Reducing DRAM Refresh 
Operations

• Idea: Identify the retention time of different rows and 
refresh each row at the frequency it needs to be 
refreshed

• (Cost-conscious) Idea: Bin the rows according to their 
minimum retention times and refresh rows in each bin at 
the refresh rate specified for the bin
– e.g., a bin for 64-128ms, another for 128-256ms, …

• Observation: Only very few rows need to be refreshed 
very frequently [64-128ms]  Have only a few items  Low 
HW overhead to achieve large reductions in refresh 
operations

• Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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