
CSCI 564 Advanced Computer Architecture
Lecture 10: Main Memory System

Dr. Bo Wu (with modifications by Sumner Evans)
April 18, 2021

Colorado School of Mines

The Main Memory System

The Main Memory System

• Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

• Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

Processor
and caches

Main Memory Storage (SSD/HDD)

Memory System: A Shared Resource
View

Storage

Demand for Memory Capacity
More cores ⇨ More concurrency ⇨ Larger working set

• Modern applications are (increasingly) data-intensive

• Many applications/virtual machines (will) share main
memory
– Cloud computing/servers: Consolidation to improve efficiency
– Many-core CPUs: Many threads from multiple parallel applications
– Mobile: Interactive + non-interactive consolidation
– … 4

IBM Power7: 8 cores Intel SCC: 48 cores AMD Barcelona: 4 cores

Example: The Memory Capacity Gap

• Memory capacity per core expected to drop by 30% every two years
• Trends worse for memory bandwidth per core!

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

Major Trends Affecting Main
Memory (I)

• Need for main memory capacity, bandwidth, QoS
increasing
– Multi-core: increasing number of cores/agents
– Data-intensive applications: increasing demand/hunger for data
– Consolidation: Cloud computing, GPUs, mobile, heterogeneity

• Main memory energy/power is a key system design
concern

• DRAM technology scaling is ending

Major Trends Affecting Main
Memory (II)

• Need for main memory capacity, bandwidth, QoS
increasing

• Main memory energy/power is a key system design
concern
– IBM servers: ~50% energy spent in off-chip memory hierarchy

[Lefurgy, IEEE Computer 2003]
– DRAM consumes power when idle and needs periodic refresh

• DRAM technology scaling is ending

Major Trends Affecting Main
Memory (III)

• Need for main memory capacity, bandwidth, QoS
increasing

• Main memory energy/power is a key system design
concern

• DRAM technology scaling is ending
– ITRS projects DRAM will not scale easily below X nm
– Scaling has provided many benefits:

• higher capacity, higher density, lower cost, lower energy

The DRAM Scaling Problem
• DRAM stores charge in a capacitor (charge-based memory)

– Capacitor must be large enough for reliable sensing
– Access transistor should be large enough for low leakage and

high retention time
– Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

• DRAM capacity, cost, and energy/power hard to scale

 Row of Cells
 Row
 Row
 Row
 Row

 Wordline

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” ISCA 2014.

Evidence of the DRAM Scaling Problem

 Row of Cells
 Row
 Row
 Row
 Row

 Wordline

 VHIGHOpened

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” ISCA 2014.

Evidence of the DRAM Scaling Problem

 Row of Cells
 Row
 Row
 Row
 Row

 Wordline

 VLOWClosed

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” ISCA 2014.

Evidence of the DRAM Scaling Problem

 Row of Cells
 Row
 Row
 Row
 Row

 Wordline

 VHIGH

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” ISCA 2014.

Evidence of the DRAM Scaling Problem

 Row of Cells
 Row
 Row
 Row
 Row

 Wordline

 VHIGH Aggressor Row

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” ISCA 2014.

Evidence of the DRAM Scaling Problem

 Row of Cells
 Row
 Row
 Row
 Row

 Wordline

 VHIGH
 Victim Row

 Victim Row
 Aggressor Row

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” ISCA 2014.

Evidence of the DRAM Scaling Problem

 Row of Cells
 Row
 Row
 Row
 Row

 Wordline

 VHIGH
 Victim Row

 Victim Row
 Aggressor Row

Repeatedly opening and closing a row enough times within a
refresh interval induces disturbance errors in adjacent rows
in most real DRAM chips you can buy today

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” ISCA 2014.

Evidence of the DRAM Scaling Problem

86%
(37/43)

83%
(45/54)

88%
(28/32)

A
company

B
company

C
company

Up to
1.0×107
errors

Up to
2.7×106

errors

Up to
3.3×105
errors

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” ISCA 2014.

Most DRAM Modules Are At Risk

DRAM Modulex86 CPU

Y

X

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

x86 CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

DRAM Module

x86 CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

DRAM Module

x86 CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

DRAM Module

Participation Homework (25 points!)

Read: Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors.

Write: a 250 word summary of the paper and submit on
Gradescope (as a .txt or PDF, typed, not handwritten).

Main Memory in the System

CORE 1

L
2 C

A
C

H
E

 0

S
H

A
R

E
D

 L
3 C

A
C

H
E

D
R

A
M

 IN
T

E
R

FA
C

E
CORE 0

CORE 2 CORE 3
L

2 C
A

C
H

E
 1

L
2 C

A
C

H
E

 2

L
2 C

A
C

H
E

 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

Main Memory in a Real System

This is Sumner’s custom-built desktop. You can see the large cooling element
on top of the CPU, the DRAM sticks to the right, and the NVMe SSD below.

Some Fundamental Concepts

• Physical address space
• Maximum size of main memory: total number of uniquely

identifiable locations
• Physical addressability

• Minimum size of data in memory that can be addressed
• Examples: byte-addressable, wodr-addressable, 64-bit

addressable
• Microarchitectural addressability depends on the abstraction

level of the implementation

The DRAM Subsystem: A
Bottom-Up View

DRAM Subsystem Organization

• Channel
• DIMM (Dual Inline Memory Module)
• Rank
• Chip
• Bank
• Row/Column

Memory Bank Organization
• Read access sequence:

1. Decode row address
& drive word-lines

 2. Selected bits drive
bit-lines
 • Entire row read

 3. Amplify row data

 4. Decode column

address & select subset
of row

 • Send to output

 5. Precharge bit-lines
 • For next access

Interleaving
• Interleaving (banking)

– Problem: a single monolithic memory array takes long to access
and does not enable multiple accesses in parallel

– Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

– Idea: Divide the array into multiple banks that can be accessed
independently (in the same cycle or in consecutive cycles)

• Each bank is smaller than the entire memory storage
• Accesses to different banks can be overlapped

– A Key Issue: How do you map data to different banks? (i.e., how
do you interleave data across banks?)

Page Mode DRAM
• A DRAM bank is a 2D array of cells: rows x columns
• A “DRAM row” is also called a “DRAM page”
• The activated row is put in a“row buffer”

• Each address is a <row,column> pair
• Access to a “closed row”

– Activate command opens row (placed into row buffer)
– Read/write command reads/writes column in the row buffer
– Precharge command closes the row and prepares the bank

for next access
• Access to an “open row”

– No need for activate command

40

DRAM Bank Operation
Columns

R
ow

s

DRAM Bank Operation

Row Buffer

Columns

R
ow

s

DRAM Bank Operation

Row BufferEmpty

Columns

R
ow

s

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

Empty

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Row address 0

Empty

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Row address 0

Empty

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Row 0

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column muxColumn address 0

Row 0

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column muxColumn address 0

Row 0

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column muxColumn address 0

Data

Row 0

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)
Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)

HIT

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)

Column address 1

HIT

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)

Column address 1

HIT

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)
Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)
(Row 0, Column 85)

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)
(Row 0, Column 85)

HIT

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)
(Row 0, Column 85)

Column address 85

HIT

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)
(Row 0, Column 85)

Column address 85

HIT

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)
(Row 0, Column 85)

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

CONFLICT !

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

 (Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

CONFLICT !

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

 (Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row address 1

CONFLICT !

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

 (Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row address 1

CONFLICT !

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

 (Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row 1 CONFLICT !

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

 (Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

 (Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

 (Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row 1

Column address 0

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Row address 0

Empty

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column muxColumn address 0

Data

Row 0

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)

Column address 1

HIT

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)
(Row 0, Column 85)

Column address 85

HIT

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

Row 0

 (Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

CONFLICT !

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

 (Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row address 1

CONFLICT !

Columns

R
ow

s

 Access Address:

DRAM Bank Operation

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Data

 (Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row 1

Column address 0

Columns

R
ow

s

 Access Address:

The DRAM Chip

• Consists of multiple banks (2-16 in DRAM)
• Banks share command, address, and data busses
• The chip itself has a narrow interface (4-16 bits per read)

The DRAM Rank and Module

A DRAM rank consists of multiple chips operated together to
form a wide interface.

All chips comprising a rank are controlled at the same time.

• They all respond to a single command.
• They share address and command buses, but provide different

data.

A DRAM module consists of one or more ranks.

• For example DIMM (dual inline memory module)
• This is what you plug into your motherboard

If we have chips with 8-bit interfaces, to read 8 bytes in a single
access, we would want 8 chips in a DIMM.

A 64-bit Wide DIMM (One
Rank)

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Command Data

Multiple DIMMs
• Advantages:

– Enables even
higher capacity

• Disadvantages:
– Interconnect

complexity and
energy
consumption
can be high

DRAM Channels

• 2 Independent Channels: 2 Memory Controllers
(Above)

Generalized Memory
Structure

Generalized Memory
Structure

The DRAM Subsystem: A
Top-Down View

DRAM Subsystem Organization

• Channel
• DIMM (Dual Inline Memory Module)
• Rank
• Chip
• Bank
• Row/Column

The DRAM subsystem

Memory
channel

Memory
channel

DIMM (Dual in-line memory
module)

Processor

“Channel”

Breaking down a DIMM
DIMM (Dual in-line memory

module)
Side view

Front of DIMM Back of DIMM

Breaking down a DIMM
DIMM (Dual in-line memory

module)
Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8
chips

Rank 1

Breaking down a DIMM
DIMM (Dual in-line memory

module)
Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8
chips

Rank 1

Rank

Rank 0 (Front) Rank 1 (Back)

Data <0:63>CS <0:1>Addr/Cmd

<0:63><0:63>

Memory
channel

Breaking down a Rank

Rank 0

<0:63>

Ch
i

p
0

Ch
i

p
1

Ch
i

p
7. . .

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>

Breaking down a Chip
Ch

i
p

0
<0

:7
>

8 banks

Bank 0

<0:7
>

<0:7
>

<0:7
>

...

<0
:7

>

Breaking down a Bank

Bank 0

<0
:7

>

row 0

row 16k-
1 ...

2kB

1
B

1B
(column)

1
B

Row-buffer
1
B...

<0
:7

>

DRAM Subsystem Organization

• Channel
• DIMM (Dual Inline Memory Module)
• Rank
• Chip
• Bank
• Row/Column

DRAM Subsystem Operation

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache
block

Physical memory
space

Channel 0

DIMM
0

Rank 0
Mapped to

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache
block

Physical memory
space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache
block

Physical memory
space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>

Row
0
Col 0

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache
block

Physical memory
space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>
8
B

Row
0
Col 0

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache
block

Physical memory
space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>
8
B

Row
0
Col 1

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache
block

Physical memory
space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>
8
B

8
B

Row
0
Col 1

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache
block

Physical memory
space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>
8
B

8
B

Row
0
Col 1

A 64B cache block takes 8 I/O cycles to transfer.

During the process, 8 columns are read sequentially.

. . .

How Multiple Banks/Channels Help

DRAM Bank Operation

Row Buffer

R
ow

 d
ec

od
er

Column mux

Row address

Data

Row 0Empty

Column address

Row 1

Columns

R
ow

s

DRAM Scheduling

Row Buffer Management Policy

Row buffers can act as a cache within DRAM.

• Open Row: keep the row open after access
• Pro: next access might need the same row → row hit
• Con: next access might need a different row → row conflict

• Closed Row: close the row open after an access
• Pro: next access might need a different row → no row conflict
• Con: next access might need the same row → extra activation

Practice: DRAM Operation: Worksheet Problem 2

• Row buffer hit: only need to move data from row buffer to pins (~20 ns
access time)

• Empty row buffer access: must first read read the row, the move data
from row buffer to pins (~40 ns access time)

• Row buffer conflict: must first precharge the bitlines, then read the
other row, the move data from row buffer to pins (~60 ns access time)

Time of Service
Requested Time of Arrival Open Closed
X 0
Y 10
X + 1 100
X + 2 200
Y + 1 250
X + 3 300

A Modern DRAM Controller
(I)

A Modern DRAM Controller
(II)

DRAM Scheduling Policies

• First-come, first-served (FCFS)
• oldest request first

• First-ready, first-come, first-served (FR-FCFS)
1. Row-hit first
2. Oldest first

Goal: maximize row buffer hit rate → maximize DRAM
throughput

Trend: Many Cores on Chip
• Simpler and lower power than a single large core
• Large scale parallelism on chip

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

(Un)expected Slowdowns with Multi-Core Systems

• What we want:
• N times the system performance with N times the cores.

• What do we get today?

Moscibroda and Mutlu, Memory performance attacks: Denial of memory
service in multi-core systems, USENIX Security 2007.

Uncontrolled Interference: An Example

CORE 1 CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

DRAM
Bank 3

Uncontrolled Interference: An Example

CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM
Bank 3

Uncontrolled Interference: An Example

CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM
Bank 3

Uncontrolled Interference: An Example

CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM
Bank 3

Uncontrolled Interference: An Example

CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM
Bank 3

Uncontrolled Interference: An Example

CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM
Bank 3

Uncontrolled Interference: An Example

CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM
Bank 3

Uncontrolled Interference: An Example

CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM
Bank 3

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = j*linesize;
 A[index] = B[index];
 …
}

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = j*linesize;
 A[index] = B[index];
 …
}

streaming

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = rand();
 A[index] = B[index];
 …
}

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = j*linesize;
 A[index] = B[index];
 …
}

streaming

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = rand();
 A[index] = B[index];
 …
}

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = j*linesize;
 A[index] = B[index];
 …
}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T0: Row 0T1: Row 111

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T0: Row 0T1: Row 111

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T0: Row 0T1: Row 5

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T0: Row 0T1: Row 5

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

Memory Request Buffer

T0: STREAM
T1: RANDOM

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

S
lo

w
do

w
n

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Effect of Memory Performance Hog

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

S
lo

w
do

w
n

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Effect of Memory Performance HogProblems due to Uncontrolled Interference
S

lo
w

d
o

w
n

Main memory is the only shared resource

Problems due to Uncontrolled Interference

• Unfair slowdown of different threads

S
lo

w
d

o
w

n
Main memory is the only shared resource

Problems due to Uncontrolled Interference

• Unfair slowdown of different threads

Memory performance hog

S
lo

w
d

o
w

n
Main memory is the only shared resource

Problems due to Uncontrolled Interference

• Unfair slowdown of different threads
• Priority inversion: unable to enforce priorities/SLAs

Low priority

High priority
S

lo
w

d
o

w
n

Main memory is the only shared resource

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = rand();
 A[index] = B[index];
 …
}

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = j*linesize;
 A[index] = B[index];
 …
}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T1: Row 5

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

S
lo

w
do

w
n

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Effect of Memory Performance Hog

Problems due to Uncontrolled Interference

• Unfair slowdown of different threads

S
lo

w
d

o
w

n
Main memory is the only shared resource

Problems due to Uncontrolled Interference

• Unfair slowdown of different threads

Memory performance hog

S
lo

w
d

o
w

n
Main memory is the only shared resource

Problems due to Uncontrolled Interference

• Unfair slowdown of different threads
• Priority inversion: unable to enforce priorities/SLAs

Low priority

High priority
S

lo
w

d
o

w
n

Main memory is the only shared resource

How do we Solve the Problem?

• Stall-time fair memory (STFM) scheduling [Mutlu+ MICRO’07]

• Goal: threads sharing main memory should experience similar
slowdowns compared to when they are run alone → fair
scheduling

• Also improves overall system performance by ensuring cores
make “proportional” progress.

• Idea: memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to balance
the slowdowns.

Mutlu and Moscibroda, Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors, MICRO 2007.

Stall-Time Fairness in Shared DRAM Systems

• A DRAM system is fair if it equalizes the slowdown of equal-priority
threads relative to when each thread is run alone on the same system

• DRAM-related stall-time: The time a thread spends waiting for DRAM
memory

• STshared — DRAM-related stall-time when the thread runs with other
threads

• STalone — DRAM-related stall-time when the thread runs with other
threads

• Memory-slowdown = STshared/STalone — relative increase in stall time

• The Stall-Time Fair Memory scheduler (STFM) aims to equalize
memory-slowdown for interfering threads, without sacrificing
performance.

• Considers inherent DRAM performance of each thread
• Aims to allow proportional progress of threads

STFM Scheduling Algorithm

• For each thread, the DRAM controller
• Keeps track of STshared
• Estimates STalone

• Each cycle, the DRAM controller
• Computes memory slowdown for threads with legal requests
• Computes unfairness = max(slowdowns)/min(slowdowns)

• If unfairness < α, use DRAM throughput-oriented scheduling
policy

• If unfairness > α, use fairness-oriented scheduling policy
1. requests from thread with maximum slowdown first
2. row-hit first
3. oldest-first

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0

T0 Slowdown

T1 Slowdown 1.00

1.00

1.00Unfairness

 1.05

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 16

T0: Row 0

T0 Slowdown

T1 Slowdown 1.00

1.00

1.00Unfairness

 1.05

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 16

T0: Row 0

T0 Slowdown

T1 Slowdown 1.00

1.00

1.00Unfairness

 1.05

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 16

T0: Row 0

T0 Slowdown

T1 Slowdown

1.00

Unfairness

1.03

1.03

 1.05

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 16

T0: Row 0

T0 Slowdown

T1 Slowdown

1.00

Unfairness

1.03

1.03

 1.05

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T0: Row 0T0: Row 0

T0 Slowdown

T1 Slowdown

1.00

Unfairness

1.06

1.06

 1.05

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 16

T1: Row 111

T0: Row 0

T0 Slowdown

T1 Slowdown

1.00

Unfairness

1.06

1.06

 1.05

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0

T1: Row 111

T0: Row 0

T0 Slowdown

T1 Slowdown

Unfairness

 1.05

1.03

1.06

1.03
Row 16

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 111

T0: Row 0

T0 Slowdown

T1 Slowdown

Unfairness

 1.05

1.03

1.06

1.03

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 111

T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown

Unfairness

 1.05

1.04

1.08

1.04

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 111

T0: Row 0

T0 Slowdown

T1 Slowdown

Unfairness

 1.05

1.04

1.08

1.04

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 111

T1: Row 5

T0: Row 0T0: Row 0

T0 Slowdown

T1 Slowdown

Unfairness

 1.05

1.04

1.11

1.06

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 111

T1: Row 5

T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown

Unfairness

 1.05

1.04

1.11

1.06

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0

T1: Row 111

T1: Row 5

T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown

Unfairness

 1.05

1.04

1.11

1.06

Row 111

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0

T1: Row 5

T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown

Unfairness

 1.05

1.11

1.07

1.04

Row 111

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 5

T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown

Unfairness

 1.05

1.11

1.07

1.04

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 5

T0: Row 0

T0 Slowdown

T1 Slowdown

Unfairness

 1.05

1.10

1.14

1.03

How Does STFM Prevent
Unfairness?

Row Buffer

Data

Row 0Row 0

T1: Row 5

T0: Row 0

T0 Slowdown

T1 Slowdown

Unfairness

 1.05

1.10

1.14

1.03

Another Problem due to
Interference

• Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests
– Memory-Level Parallelism (MLP)
– Out-of-order execution, non-blocking caches, runahead

execution

Another Problem due to
Interference

• Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests
– Memory-Level Parallelism (MLP)
– Out-of-order execution, non-blocking caches, runahead

execution

• Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

• Multiple threads share the DRAM controller
• DRAM controllers are not aware of a thread’s MLP

– Can service each thread’s outstanding requests serially, not
in parallel

Bank Parallelism of a Thread

Thread A :

Bank 0 Bank 1

Single Thread:

Bank Parallelism of a Thread

Thread A :

Bank 0 Bank 1

Compute

Single Thread:

Bank Parallelism of a Thread

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests
Single Thread:

Bank Parallelism of a Thread

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests
Single Thread:

Bank Parallelism of a Thread

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests
Single Thread:

Bank Parallelism of a Thread

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Single Thread:

Bank Parallelism of a Thread

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Single Thread:

Bank Parallelism of a Thread

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Single Thread:

Bank Parallelism of a Thread

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Single Thread:

Bank Parallelism of a Thread

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Single Thread:

Bank Parallelism of a Thread

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Single Thread:

Bank Parallelism of a Thread

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

Single Thread:

Bank Parallelism of a Thread

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped
Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

Single Thread:

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

A :

Baseline Scheduler:

B:

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

A : Compute

Baseline Scheduler:

B: Compute

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

A : Compute

2 DRAM Requests
Baseline Scheduler:

B: Compute

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests
Baseline Scheduler:

B: Compute

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests
Baseline Scheduler:

B: Compute

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Baseline Scheduler:

B: Compute

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Baseline Scheduler:

B: Compute

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Baseline Scheduler:

B: Compute Stall
Bank 1

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Baseline Scheduler:

B: Compute Stall
Bank 1

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Baseline Scheduler:

B: Compute Stall
Bank 1

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies

Parallelism-Aware Scheduler
Bank 0 Bank 1

A :

Parallelism-aware Scheduler:

B:

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Parallelism-Aware Scheduler
Bank 0 Bank 1

A :

Parallelism-aware Scheduler:

B: Compute

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall

Bank 1

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall

Bank 1

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall

Bank 1

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall

Bank 1

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall

Bank 1

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall

Bank 1

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall Compute

Bank 1

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall Compute

Bank 1

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall Compute

Bank 1

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall Compute

Bank 1

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall Compute

Bank 1

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall Compute

Bank 1

Saved Cycles

2 DRAM Requests

Parallelism-Aware Scheduler
Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:
~1.5 bank access

latencies

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3 Batch

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3 Batch

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

Batch

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T1

T1T2

T2

T3

T3

T2 T2

Batch

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T1

T1T2

T2

T3

T3

T2 T2

T2

Batch

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T1

T1T2

T2

T3

T3

T2 T2

T2

Batch

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T1

T1T2

T2

T3

T3

T2 T2

T2

Batch

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T1

T1T2

T2

T3

T3

T2 T2

T2

Batch

T0

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T2

T2

T3

T3

T2 T2

T2

Batch

T0

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T2

T2

T3

T3

T2 T2

T2

Batch

T0

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T2

T2

T3

T3

T2 T2

T2

Batch

T0

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T3

T3

T2 T2

T2

Batch

T0

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T3

T3

T2 T2

T2

Batch

T0

T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T3

T3

T2 T2

T2

Batch

T0

T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T3

T3

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T3

T3

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Request Batching
• Each memory request has a bit (marked) associated with it

• Batch formation:
– Mark up to Marking-Cap oldest requests per bank for each thread
– Marked requests constitute the batch
– Form a new batch when no marked requests are left

• Marked requests are prioritized over unmarked ones
– No reordering of requests across batches: no starvation, high fairness

Request Batching
• Each memory request has a bit (marked) associated with it

• Batch formation:
– Mark up to Marking-Cap oldest requests per bank for each thread
– Marked requests constitute the batch
– Form a new batch when no marked requests are left

• Marked requests are prioritized over unmarked ones
– No reordering of requests across batches: no starvation, high fairness

• How to prioritize requests within a batch?

Within-Batch Scheduling
• Can use any DRAM scheduling policy

– FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

Within-Batch Scheduling
• Can use any DRAM scheduling policy

– FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

• But, we also want to preserve intra-thread bank
parallelism
– Service each thread’s requests back to back

Within-Batch Scheduling
• Can use any DRAM scheduling policy

– FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

• But, we also want to preserve intra-thread bank
parallelism
– Service each thread’s requests back to back

HOW?

Within-Batch Scheduling
• Can use any DRAM scheduling policy

– FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

• But, we also want to preserve intra-thread bank
parallelism
– Service each thread’s requests back to back

• Scheduler computes a ranking of threads when
the batch is formed
– Higher-ranked threads are prioritized over lower-ranked ones
– Improves the likelihood that requests from a thread are serviced in

parallel by different banks
• Different threads prioritized in the same order across ALL banks

HOW?

How to Rank Threads within
a Batch

• Ranking scheme affects system throughput and fairness

How to Rank Threads within
a Batch

• Ranking scheme affects system throughput and fairness

• Maximize system throughput

How to Rank Threads within
a Batch

• Ranking scheme affects system throughput and fairness

• Maximize system throughput
– Minimize average stall-time of threads within the batch

• Minimize unfairness (Equalize the slowdown of threads)

How to Rank Threads within
a Batch

• Ranking scheme affects system throughput and fairness

• Maximize system throughput
– Minimize average stall-time of threads within the batch

• Minimize unfairness (Equalize the slowdown of threads)
– Service threads with inherently low stall-time early in the batch
– Insight: delaying memory non-intensive threads results in high slowdown

How to Rank Threads within
a Batch

• Ranking scheme affects system throughput and fairness

• Maximize system throughput
– Minimize average stall-time of threads within the batch

• Minimize unfairness (Equalize the slowdown of threads)
– Service threads with inherently low stall-time early in the batch
– Insight: delaying memory non-intensive threads results in high slowdown

• Shortest stall-time first (shortest job first) ranking

How to Rank Threads within
a Batch

• Ranking scheme affects system throughput and fairness

• Maximize system throughput
– Minimize average stall-time of threads within the batch

• Minimize unfairness (Equalize the slowdown of threads)
– Service threads with inherently low stall-time early in the batch
– Insight: delaying memory non-intensive threads results in high slowdown

• Shortest stall-time first (shortest job first) ranking
– Provides optimal system throughput [Smith, 1956]*

– Controller estimates each thread’s stall-time within the batch
– Ranks threads with shorter stall-time higher

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T0

Bank 0 Bank 1 Bank 2 Bank 3

T0 T0

max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T0

Bank 0 Bank 1 Bank 2 Bank 3

T0 T0

max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T1

Bank 0 Bank 1 Bank 2 Bank 3

T1

T1

T1

max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T1

Bank 0 Bank 1 Bank 2 Bank 3

T1

T1

T1

max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2

Bank 0 Bank 1 Bank 2 Bank 3

T2 T2 T2

T2

T2

max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2

Bank 0 Bank 1 Bank 2 Bank 3

T2 T2 T2

T2

T2

max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T3

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T3

T3 T3

T3

T3

T3
max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T3

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T3

T3 T3

T3

T3

T3
max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-
load

total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:
T0 > T1 > T2 > T3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T0

Bank 0 Bank 1 Bank 2 Bank 3

T0 T0

Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T0

Bank 0 Bank 1 Bank 2 Bank 3

T0 T0

Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T1

Bank 0 Bank 1 Bank 2 Bank 3

T1

T1

T1

Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T1

Bank 0 Bank 1 Bank 2 Bank 3

T1

T1

T1

Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T2

Bank 0 Bank 1 Bank 2 Bank 3

T2 T2 T2

T2

T2

Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T2

Bank 0 Bank 1 Bank 2 Bank 3

T2 T2 T2

T2

T2

Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T3

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T3

T3 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T3

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T3

T3 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies

Stall times

T
im

e

1

2

4

6

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

Bank 0 Bank 1 Bank 2 Bank 3

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies

Stall times

T
im

e

1

2

4

6

1

2

3

4

5

6

7

T
im

e

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

Bank 0 Bank 1 Bank 2 Bank 3

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies

Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

Bank 0 Bank 1 Bank 2 Bank 3

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies

Stall times

T0 T1 T2 T3
1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T0

Bank 0 Bank 1 Bank 2 Bank 3

T0 T0

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies

Stall times

T0 T1 T2 T3
1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T0

Bank 0 Bank 1 Bank 2 Bank 3

T0 T0

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies

Stall times

T0 T1 T2 T3
1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T1 T1T1

T0 T0

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies

Stall times

T0 T1 T2 T3
1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T1 T1T1

T0 T0

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies

Stall times

T0 T1 T2 T3
1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T2

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T1

T2 T2

T1 T2T1

T0

T2

T0

T2

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies

Stall times

T0 T1 T2 T3
1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T2

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T1

T2 T2

T1 T2T1

T0

T2

T0

T2

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies

Stall times

T0 T1 T2 T3
1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3T2 T2

T1 T2T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies

Stall times

T0 T1 T2 T3
1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3T2 T2

T1 T2T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies

Stall times

T0 T1 T2 T3
1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3T2 T2

T1 T2T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3
1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

Hardware Cost
• <1.5KB storage cost for

– 8-core system with 128-entry memory request buffer

• No complex operations (e.g., divisions)

• Not on the critical path
– Scheduler makes a decision only every DRAM cycle

Unfairness on 4-, 8-, 16-core Systems
Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

U
n

fa
ir

n
es

s
(l

o
w

er
 is

 b
et

te
r)

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

System Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
o

rm
al

iz
ed

 H
m

ea
n

 S
p

ee
d

u
p

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

PAR-BS Pros and Cons

• Upsides:

PAR-BS Pros and Cons

• Upsides:
– First scheduler to address bank parallelism

destruction across multiple threads

PAR-BS Pros and Cons

• Upsides:
– First scheduler to address bank parallelism

destruction across multiple threads
– Simple mechanism (vs. STFM)

PAR-BS Pros and Cons

• Upsides:
– First scheduler to address bank parallelism

destruction across multiple threads
– Simple mechanism (vs. STFM)
– Batching provides fairness

PAR-BS Pros and Cons

• Upsides:
– First scheduler to address bank parallelism

destruction across multiple threads
– Simple mechanism (vs. STFM)
– Batching provides fairness
– Ranking enables parallelism awareness

• Downsides:

PAR-BS Pros and Cons

• Upsides:
– First scheduler to address bank parallelism

destruction across multiple threads
– Simple mechanism (vs. STFM)
– Batching provides fairness
– Ranking enables parallelism awareness

• Downsides:
– Does not always prioritize the latency-sensitive

applications

TCM:
Thread Cluster Memory

Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),

pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

7 7.5 8 8.5 9 9.5 10
1

3

5

7

9

11

13

15

17

FCFS

FRFCF
S

STFM

Weighted Speedup

M
ax

im
um

 S
lo

w
do

w
n

B
e
t
t
e
r
s
y
s
t
e
m

t
h
r
o
u
g
h
p
u
t

B e t t e r f a i r n e s s

24 cores, 4 memory controllers, 96
workloads

Throughput vs. FairnessBank Parallelism of a Thread

Thread A :

Bank 0 Bank 1

Compute

Single Thread:

Bank Parallelism Interference
in DRAM Bank 0 Bank 1

A : Compute

Baseline Scheduler:

B: Compute

Parallelism-Aware Scheduler
Bank 0 Bank 1

A :

Parallelism-aware Scheduler:

B: Compute

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T1

T1T2

T2

T3

T3

T2 T2

T2

Batch

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T1

T1T2

T2

T3

T3

T2 T2

T2

Batch

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Parallelism-Aware Batch Scheduling
(PAR-BS)

• Principle 1: Parallelism-awareness
– Schedule requests from a thread (to

different banks) back to back
– Preserves each thread’s bank parallelism
– But, this can cause starvation…

• Principle 2: Request Batching
– Group a fixed number of oldest requests

from each thread into a “batch”
– Service the batch before all other requests
– Form a new batch when the current one is done
– Eliminates starvation, provides fairness
– Allows parallelism-awareness within a batch

Bank 0 Bank 1

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

Request Batching
• Each memory request has a bit (marked) associated with it

• Batch formation:
– Mark up to Marking-Cap oldest requests per bank for each thread
– Marked requests constitute the batch
– Form a new batch when no marked requests are left

• Marked requests are prioritized over unmarked ones
– No reordering of requests across batches: no starvation, high fairness

• How to prioritize requests within a batch?

Within-Batch Scheduling
• Can use any DRAM scheduling policy

– FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

• But, we also want to preserve intra-thread bank
parallelism
– Service each thread’s requests back to back

How to Rank Threads within
a Batch

• Ranking scheme affects system throughput and fairness

• Maximize system throughput

• Maximum number of marked requests to any bank (max-bank-load)
– Rank thread with lower max-bank-load higher (~ low stall-time)

• Total number of marked requests (total-load)
– Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First
Ranking

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3

7

5

3

Example Within-Batch Scheduling Order

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

T
im

e

1

2

4

6

Unfairness on 4-, 8-, 16-core Systems
Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

U
n

fa
ir

n
es

s
(l

o
w

er
 is

 b
et

te
r)

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

System Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
o

rm
al

iz
ed

 H
m

ea
n

 S
p

ee
d

u
p

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

PAR-BS Pros and Cons

• Upsides:

PAR-BS Pros and Cons

• Upsides:
– First scheduler to address bank parallelism

destruction across multiple threads

7 7.5 8 8.5 9 9.5 10
1

3

5

7

9

11

13

15

17

FCFS

FRFCF
S

STFM

Weighted Speedup

M
ax

im
um

 S
lo

w
do

w
n

B
e
t
t
e
r
s
y
s
t
e
m

t
h
r
o
u
g
h
p
u
t

B e t t e r f a i r n e s s

24 cores, 4 memory controllers, 96
workloads

Throughput vs. Fairness

DRAM Refresh

Distributed Refresh

• Distributed refresh eliminates long pause times

Distributed Refresh

• Distributed refresh eliminates long pause times
• Does distributed refresh reduce refresh impact on

energy?

Refresh Today: Auto Refresh
Columns

R
ow

s

Row Buffer

DRAM CONTROLLER

DRAM Bus

BANK 0 BANK 1 BANK 2 BANK 3

Refresh Today: Auto Refresh
Columns

R
ow

s

Row Buffer

DRAM CONTROLLER

DRAM Bus

BANK 0 BANK 1 BANK 2 BANK 3

A batch of rows are
periodically refreshed
via the auto-refresh command

Refresh Overhead:
Performance

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Refresh Overhead: Energy

15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Problem with Conventional RefreshProblem with Conventional Refresh
 Today: Every row is refreshed at the same rate

Problem with Conventional Refresh
 Today: Every row is refreshed at the same rate

 Observation: Most rows can be refreshed much less often
without losing data [Kim+, EDL’09]

Problem with Conventional Refresh
 Today: Every row is refreshed at the same rate

 Observation: Most rows can be refreshed much less often
without losing data [Kim+, EDL’09]

 Problem: No support in DRAM for different refresh rates per row

Reducing DRAM Refresh
Operations

Reducing DRAM Refresh
Operations

• Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be
refreshed

Reducing DRAM Refresh
Operations

• Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be
refreshed

• (Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin

Reducing DRAM Refresh
Operations

• Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be
refreshed

• (Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin
– e.g., a bin for 64-128ms, another for 128-256ms, …

Reducing DRAM Refresh
Operations

• Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be
refreshed

• (Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin
– e.g., a bin for 64-128ms, another for 128-256ms, …

• Observation: Only very few rows need to be refreshed
very frequently [64-128ms]  Have only a few items  Low
HW overhead to achieve large reductions in refresh
operations

Reducing DRAM Refresh
Operations

• Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be
refreshed

• (Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin
– e.g., a bin for 64-128ms, another for 128-256ms, …

• Observation: Only very few rows need to be refreshed
very frequently [64-128ms]  Have only a few items  Low
HW overhead to achieve large reductions in refresh
operations

• Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Distributed Refresh

• Distributed refresh eliminates long pause times

Distributed Refresh

• Distributed refresh eliminates long pause times
• Does distributed refresh reduce refresh impact on

energy?

Refresh Today: Auto Refresh
Columns

R
ow

s

Row Buffer

DRAM CONTROLLER

DRAM Bus

BANK 0 BANK 1 BANK 2 BANK 3

A batch of rows are
periodically refreshed
via the auto-refresh command

Refresh Overhead: Energy

15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Problem with Conventional Refresh

Problem with Conventional Refresh
 Today: Every row is refreshed at the same rate

Reducing DRAM Refresh
Operations

• Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be
refreshed

• (Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin
– e.g., a bin for 64-128ms, another for 128-256ms, …

• Observation: Only very few rows need to be refreshed
very frequently [64-128ms]  Have only a few items  Low
HW overhead to achieve large reductions in refresh
operations

• Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

	The Main Memory System
	The DRAM Subsystem: A Bottom-Up View
	The DRAM Subsystem: A Top-Down View

