
CSCI 564 Advanced Computer Architecture
Lecture 10: Out-of-Order Execution

Dr. Bo Wu (with modifications by Sumner Evans)
April 6, 2021

Colorado School of Mines

Review of In-Order Pipelines

An In-Order Pipeline

• Problem: A true data dependency stalls dispatch of younger
instructions into functional (that is, execution) units.

• Dispatching an instruction is the act of sending that
instruction to a functional unit.

Know the Enemy I

What do the following two pieces of code have in common (with
respect to execution in the previous design)?

IMUL R3 <- R1, R2
ADD R3 <- R3, R1
ADD R1 <- R6, R7
IMUL R5 <- R6, R8
ADD R7 <- R9, R9

LD R3 <- R1(0)
ADD R3 <- R3, R1
ADD R1 <- R6, R7
IMUL R5 <- R6, R8
ADD R7 <- R9, R9

Answer: the first ADD stalls the whole pipeline!

• ADD cannot dispatch because its source registers are
unavailable.

• Later independent instructions cannot get executed.

Know the Enemy II

What is different between the following two pieces of code (with
respect to execution in the previous design)?

IMUL R3 <- R1, R2
ADD R3 <- R3, R1
ADD R1 <- R6, R7
IMUL R5 <- R6, R8
ADD R7 <- R9, R9

LD R3 <- R1(0)
ADD R3 <- R3, R1
ADD R1 <- R6, R7
IMUL R5 <- R6, R8
ADD R7 <- R9, R9

Answer: load latency is variable (we don’t know if it will be a
cache hit or miss until runtime)

• What does this affect? One can be solved by the compiler,
the other requires microarchitectural support.

Preventing Dispatch Stalls

There are many ways to prevent dispatch stalls. We have already
seen two:

1. Fine-grained multithreading (execute a different thread each
cycle)

2. Compile-time instruction scheduling/reordering

What are the disadvantages of the above two?

• Requires thread saturation
• Not dynamic

Thoughts for how to improve?

Introducing Out-of-Order Execution

Out-of-Order Execution (Dynamic Scheduling)

Idea: Move the dependent instructions out of the way of
independent ones.

• Add rest areas for dependent instructions (reservation
stations)

Then, we can monitor the source values of each instruction in the
rest area.

When all source values of an instruction are available, dispatch the
instruction.

Benefit: latency tolerance: allows independent instructions to
execute and complete in the presence of a long-latency operation.

In-order vs. Out-of-order Dispatch
• In order dispatch + precise exceptions:

• Out-of-order dispatch + precise exceptions:

• 15 vs. 12 cycles
6

F D WE E E E R

F D E R W

F

IMUL R3 ß R1, R2
ADD R3 ß R3, R1
ADD R1 ß R6, R7
IMUL R5 ß R6, R8
ADD R7 ß R3, R5

D E R W

F D E R W
F D E R W

F D WE E E E R

F D

STALL
STALL

E R W
F D

E E E

STALL

E R

F D E E E E R W

F D E R W

WAIT

WAIT

W

Data Dependence

Register Renaming

ADD R1 <- R2, R3
ADD R1 <- R4, R5
ADD R8 <- R1, R5

ADD R1 <- R2, R3
ADD R6 <- R4, R5
ADD R8 <- R6, R5

Overview of Out-of-Order Execution

Out-of-Order Implementation

Practice: Rename Registers: Worksheet Problem 1

Show the renamed versions of the following code. Assume you
have 4 rename registers, T1-T4.

ADD R1, R2, R3
ADD R3, R4, R5
BEQZ R1, 1000
ADD R1, R1, R3
ADD R1, R1, R3
ADD R3, R1, R3

Practice: Rename Registers: Worksheet Problem 2

Show the renamed versions of the following code. Assume you
have 36 physical registers and 32 architected registers.

ADD R1, R2, R3
ADD R3, R4, R5
BEQZ R1, 1000
ADD R1, R1, R3
ADD R1, R1, R3
ADD R3, R1, R3
ADD R4, R3, R1

The Dataflow Model

The Dataflow Model
• Von Neumann model: An instruction is fetched and

executed in control flow order
– As specified by the instruction pointer
– Sequential unless explicit control flow instruction

• Dataflow model: An instruction is fetched and executed in
data flow order
– i.e., when its operands are ready
– i.e., there is no instruction pointer
– Instruction ordering specified by data flow dependence

• Each instruction specifies “who” should receive the result
• An instruction can “fire” whenever all operands are received

– Potentially many instructions can execute at the same time
• Inherently more parallel

von Neumann vs Dataflow
• Consider a von Neumann program

– What is the significance of the program order?
– What is the significance of the storage locations?

• Which model is more natural to you as a programmer?

v	<=	a	+	b;			
w	<=	b	*	2;
x	<=	v	- w
y	<=	v	+	w
z	<=	x	*	y

+ *2

- +

*

a b

z

Sequential

Dataflow

More on Data Flow
• In a data flow machine, a program consists of data flow

nodes
– A data flow node fires (fetched and executed) when all its inputs

are ready
• i.e. when all inputs have tokens

• Data flow node and its ISA representation

Dataflow Nodes
• A small set of dataflow operators can be used to

define a general programming language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

Þ

Dataflow Graphs

{x = a + b;
y = b * 7
in

(x-y) * (x+y)}

a b

+ *7

- +

*

y
x

1 2

3 4

5

• Values in dataflow graphs are
represented as tokens

• An operator executes when all its
input tokens are present; copies of
the result token are distributed to
the destination operators

token < ip , p , v >
instruction ptr port data

no separate control flow

Control Flow vs. Data Flow

Data Flow Characteristics
• Data-driven execution of instruction-level graphical code

– Nodes are operators
– Arcs are data (I/O)
– As opposed to control-driven execution

• Only real dependencies constrain processing
• No sequential instruction stream

– No program counter
• Execution triggered by the presence/readiness of data

28

A Dataflow Processor

Data Flow Advantages/Disadvantages
• Advantages

– Very good at exploiting irregular parallelism
– Only real dependencies constrain processing

• Disadvantages
– No precise state

• Debugging very difficult
• Interrupt/exception handling is difficult

– Bookkeeping overhead (tag matching)
– Too much parallelism? (Parallelism control needed)

