
CSCI 564 Advanced Computer Architecture
Lecture 03: Amdahl’s Law

Dr. Bo Wu (with modifications by Sumner Evans)
March 3, 2021

Colorado School of Mines

Amdahl’s Law

• Amdahl’s Law is the fundamental theorem of performance
optimization.

• It was made by Amdahl! (One of the designers of the IBM 360.)

The Key Observation
Optimizations do not (generally) uniformly affect the entire
program.

• The more widely applicable a technique is, the more valuable
it is

• Conversely, limited applicability can (drastically) reduce the
impact of the optimization.

Always heed Amdahl’s Law!!!
It is central to many many optimization problems.

Amdahl’s Law in Action

`

• SuperJPEG-O-Rama2010 ISA extensions **
–Speeds up JPEG decode by 10x!!!
–Act now! While Supplies Last!

Amdahl’s Law in Action

**SuperJPEG-O-Rama Inc. makes no claims about the usefulness of this software for any
purpose whatsoever. It may not even build. It may cause fatigue, blindness, lethargy,
malaise, and irritability. Debugging maybe hazardous. It will almost certainly cause ennui.
Do not taunt SuperJPEG-O-Rama. Will not, on grounds of principle, decode images of
Justin Beiber. Images of Lady Gaga maybe transposed, and meat dresses may be rendered
as tofu. Not covered by US export control laws or the Geneva convention, although it
probably should be. Beware of dog. Increases processor cost by 45%. Objects in the rear
view mirror may appear closer than they are. Or is it farther? Either way, watch out! If you
use SuperJPEG-O-Rama, the cake will not be a lie. All your base are belong to 141L. No
whining or complaining. Wingeing is allowed, but only in countries where “wingeing” is a
word.

`

• SuperJPEG-O-Rama2010 ISA extensions **
–Speeds up JPEG decode by 10x!!!
–Act now! While Supplies Last!

Amdahl’s Law in Action

**SuperJPEG-O-Rama Inc. makes no claims about the usefulness of this software for any
purpose whatsoever. It may not even build. It may cause fatigue, blindness, lethargy,
malaise, and irritability. Debugging maybe hazardous. It will almost certainly cause ennui.
Do not taunt SuperJPEG-O-Rama. Will not, on grounds of principle, decode images of
Justin Beiber. Images of Lady Gaga maybe transposed, and meat dresses may be rendered
as tofu. Not covered by US export control laws or the Geneva convention, although it
probably should be. Beware of dog. Increases processor cost by 45%. Objects in the rear
view mirror may appear closer than they are. Or is it farther? Either way, watch out! If you
use SuperJPEG-O-Rama, the cake will not be a lie. All your base are belong to 141L. No
whining or complaining. Wingeing is allowed, but only in countries where “wingeing” is a
word.

`

• SuperJPEG-O-Rama2010 ISA extensions **
–Speeds up JPEG decode by 10x!!!
–Act now! While Supplies Last!

Amdahl’s Law in Action
• SuperJPEG-O-Rama2010 in the wild
• PictoBench spends 33% of it’s time doing

JPEG decode
• How much does JOR2k help?

56

JPEG Decodew/o JOR2k

w/ JOR2k

30s

21s

Amdahl’s Law in Action
• SuperJPEG-O-Rama2010 in the wild
• PictoBench spends 33% of it’s time doing

JPEG decode
• How much does JOR2k help?

56

JPEG Decodew/o JOR2k

w/ JOR2k

30s

21s

Amdahl’s Law in Action
• SuperJPEG-O-Rama2010 in the wild
• PictoBench spends 33% of it’s time doing

JPEG decode
• How much does JOR2k help?

56

JPEG Decodew/o JOR2k

w/ JOR2k

30s

21s

Performance: 30/21 = 1.42x Speedup != 10x

Amdahl’s Law in Action
• SuperJPEG-O-Rama2010 in the wild
• PictoBench spends 33% of it’s time doing

JPEG decode
• How much does JOR2k help?

56

JPEG Decodew/o JOR2k

w/ JOR2k

30s

21s

Performance: 30/21 = 1.42x Speedup != 10x

Amdahl
ate our

Speedup!

Amdahl’s Law in Action
• SuperJPEG-O-Rama2010 in the wild
• PictoBench spends 33% of it’s time doing

JPEG decode
• How much does JOR2k help?

56

JPEG Decodew/o JOR2k

w/ JOR2k

30s

21s

Performance: 30/21 = 1.42x Speedup != 10x

Amdahl
ate our

Speedup!

Is this worth the
45% increase in

cost?

Amdahl’s Law in Action
• SuperJPEG-O-Rama2010 in the wild
• PictoBench spends 33% of it’s time doing

JPEG decode
• How much does JOR2k help?

56

JPEG Decodew/o JOR2k

w/ JOR2k

30s

21s

Performance: 30/21 = 1.42x Speedup != 10x

Amdahl
ate our

Speedup!

Is this worth the
45% increase in

cost?

Metric = Latency * Cost =>

Amdahl’s Law in Action
• SuperJPEG-O-Rama2010 in the wild
• PictoBench spends 33% of it’s time doing

JPEG decode
• How much does JOR2k help?

56

JPEG Decodew/o JOR2k

w/ JOR2k

30s

21s

Performance: 30/21 = 1.42x Speedup != 10x

Amdahl
ate our

Speedup!

Is this worth the
45% increase in

cost?

Metric = Latency * Cost => No

Amdahl’s Law in Action
• SuperJPEG-O-Rama2010 in the wild
• PictoBench spends 33% of it’s time doing

JPEG decode
• How much does JOR2k help?

56

JPEG Decodew/o JOR2k

w/ JOR2k

30s

21s

Performance: 30/21 = 1.42x Speedup != 10x

Amdahl
ate our

Speedup!

Is this worth the
45% increase in

cost?

Metric = Latency * Cost =>

Metric = Latency2 * Cost =>

No

Amdahl’s Law in Action
• SuperJPEG-O-Rama2010 in the wild
• PictoBench spends 33% of it’s time doing

JPEG decode
• How much does JOR2k help?

56

JPEG Decodew/o JOR2k

w/ JOR2k

30s

21s

Performance: 30/21 = 1.42x Speedup != 10x

Amdahl
ate our

Speedup!

Is this worth the
45% increase in

cost?

Metric = Latency * Cost =>

Metric = Latency2 * Cost => Yes
No

Explanation
• Latency*Cost and Latency2*Cost are smaller-is-better metrics.
• Old System: No JOR2k

• Latency = 30s
• Cost = C (we don’t know exactly, so we assume a constant, C)

• New System: With JOR2k
• Latency = 21s
• Cost = 1.45 * C

• Latency*Cost
• Old: 30*C
• New: 21*1.45*C
• New/Old = 21*1.45*C/30*C = 1.015
• New is bigger (worse) than old by 1.015x

• Latency2*Cost
• Old: 302 *C
• New: 212 *1.45*C
• New/Old = 212*1.45*C/302*C = 0.71
• New is smaller (better) than old by 0.71x

• In general, you can make C = 1, and just leave it out.
57

Explanation
• Latency*Cost and Latency2*Cost are smaller-is-better metrics.
• Old System: No JOR2k

• Latency = 30s
• Cost = C (we don’t know exactly, so we assume a constant, C)

• New System: With JOR2k
• Latency = 21s
• Cost = 1.45 * C

• Latency*Cost
• Old: 30*C
• New: 21*1.45*C
• New/Old = 21*1.45*C/30*C = 1.015
• New is bigger (worse) than old by 1.015x

• Latency2*Cost
• Old: 302 *C
• New: 212 *1.45*C
• New/Old = 212*1.45*C/302*C = 0.71
• New is smaller (better) than old by 0.71x

• In general, you can make C = 1, and just leave it out.
57

Explanation
• Latency*Cost and Latency2*Cost are smaller-is-better metrics.
• Old System: No JOR2k

• Latency = 30s
• Cost = C (we don’t know exactly, so we assume a constant, C)

• New System: With JOR2k
• Latency = 21s
• Cost = 1.45 * C

• Latency*Cost
• Old: 30*C
• New: 21*1.45*C
• New/Old = 21*1.45*C/30*C = 1.015
• New is bigger (worse) than old by 1.015x

• Latency2*Cost
• Old: 302 *C
• New: 212 *1.45*C
• New/Old = 212*1.45*C/302*C = 0.71
• New is smaller (better) than old by 0.71x

• In general, you can make C = 1, and just leave it out.
57

Explanation
• Latency*Cost and Latency2*Cost are smaller-is-better metrics.
• Old System: No JOR2k

• Latency = 30s
• Cost = C (we don’t know exactly, so we assume a constant, C)

• New System: With JOR2k
• Latency = 21s
• Cost = 1.45 * C

• Latency*Cost
• Old: 30*C
• New: 21*1.45*C
• New/Old = 21*1.45*C/30*C = 1.015
• New is bigger (worse) than old by 1.015x

• Latency2*Cost
• Old: 302 *C
• New: 212 *1.45*C
• New/Old = 212*1.45*C/302*C = 0.71
• New is smaller (better) than old by 0.71x

• In general, you can make C = 1, and just leave it out.
57

Explanation
• Latency*Cost and Latency2*Cost are smaller-is-better metrics.
• Old System: No JOR2k

• Latency = 30s
• Cost = C (we don’t know exactly, so we assume a constant, C)

• New System: With JOR2k
• Latency = 21s
• Cost = 1.45 * C

• Latency*Cost
• Old: 30*C
• New: 21*1.45*C
• New/Old = 21*1.45*C/30*C = 1.015
• New is bigger (worse) than old by 1.015x

• Latency2*Cost
• Old: 302 *C
• New: 212 *1.45*C
• New/Old = 212*1.45*C/302*C = 0.71
• New is smaller (better) than old by 0.71x

• In general, you can make C = 1, and just leave it out.
57

Amdahl’s Law

Amdahl’s Law is the second fundamental theorem of computer
architecture.
Amdahl’s Law
If we can speedup x of the program by S times, the total
speedup, Stot is given by:

Stot =
1(x

S + (1 − x)
) .

Sanity check: if x = 1 (can speedup entire program)

Stot =
1(1

S + (1 − x)
) =

1(1
S
) = S

Amdahl’s Corollary #1

Maximum Possible Speedup
The maximum possible speedup, Smax, from targeting x of the
program is given by

Smax =
1

1 − x .

Why? the maximum possible S is ∞. Take the limit!

lim
S→∞

Stot = lim
S→∞

1(1
S + (1 − x)

) =
1

(0 + (1 − x)) =
1

1 − x

Practice: Amdahl’s Law: Worksheet Problem 1

You have some protein matching code. It completes in 200 hours
on your current machine, and spends 20% of the time doing
integer operations.

1. How much faster must you make the integer unit to make the
code run 10 hours faster?

2. How much faster must you make the integer unit to make the
code run 50 hours faster?

Practice: Amdahl’s Law: Worksheet Problem 2

You have some graph processing code which takes four days to
execute on your current machine. Of that time

• 20% of the time is spent performing integer operations, and
• 35% of the time is spent performing I/O operations.

Which of the following is the better tradeoff?

1. A compiler optimization that reduces the number of integer
instructions by 25% (assume that each integer operation still
takes the same amount of time).

2. A hardware optimization that reduces the latency of each I/O
operation from 6µs to 5µs.

Amdahl’s Corollary #2

Make the common case fast (i.e., x should be large)!

• “Start with the largest rocks.”
• Common means “most time consuming”, not necessarily

“most frequent”.
• The uncommon case(s) don’t make much difference.
• Be sure you know what the common case actually is!
• The common case can change based on inputs, compiler

optimizations, optimizations you apply, etc.

After you’ve made the common case fast, repeat!

• With optimization, the common becomes uncommon.
• An uncommon case will (hopefully) become the new common

case.
• Now target it for optimization!

Amdahl’s Corollary #2: Example

• In the end, there is no common case!
• Options:

• Global optimizations (faster clock, better compiler)
• Divide the program up differently

• e.g. Focus on classes of instructions (maybe memory or FP?), rather than
functions.

• e.g. Focus on function call over heads (which are everywhere).
• War of attrition
• Total redesign (You are probably well-prepared for this)

Common case

Amdahl’s Corollary #2: Example

• In the end, there is no common case!
• Options:

• Global optimizations (faster clock, better compiler)
• Divide the program up differently

• e.g. Focus on classes of instructions (maybe memory or FP?), rather than
functions.

• e.g. Focus on function call over heads (which are everywhere).
• War of attrition
• Total redesign (You are probably well-prepared for this)

Common case

7x => 1.4x

Amdahl’s Corollary #2: Example

• In the end, there is no common case!
• Options:

• Global optimizations (faster clock, better compiler)
• Divide the program up differently

• e.g. Focus on classes of instructions (maybe memory or FP?), rather than
functions.

• e.g. Focus on function call over heads (which are everywhere).
• War of attrition
• Total redesign (You are probably well-prepared for this)

Common case

7x => 1.4x
4x => 1.3x

Amdahl’s Corollary #2: Example

• In the end, there is no common case!
• Options:

• Global optimizations (faster clock, better compiler)
• Divide the program up differently

• e.g. Focus on classes of instructions (maybe memory or FP?), rather than
functions.

• e.g. Focus on function call over heads (which are everywhere).
• War of attrition
• Total redesign (You are probably well-prepared for this)

Common case

7x => 1.4x
4x => 1.3x

1.3x => 1.1x

Total = 20/10 = 2x

Amdahl’s Corollary #2: Example

• In the end, there is no common case!
• Options:

• Global optimizations (faster clock, better compiler)
• Divide the program up differently

• e.g. Focus on classes of instructions (maybe memory or FP?), rather than
functions.

• e.g. Focus on function call over heads (which are everywhere).
• War of attrition
• Total redesign (You are probably well-prepared for this)

Common case

7x => 1.4x
4x => 1.3x

1.3x => 1.1x

Total = 20/10 = 2x

Amdahl’s Corollary #3

Amdahl’s third corollary bounds the speedup of parallelizing a
program across p processors.
Maximum Speedup from Parallelization
If x of a program is p-way parallelizable, the maximum possible
speedup achievable from parallelizing that part of the application
is given by

Spar =
1

x
p + (1 − x)

One of the key challenges in parallel programming is increasing x
for large p.

• On desktop applications, x is fairly small even for p = 2.
• This is why having more cores doesn’t necessarily mean you

will get better performance!

Practice: Amdahl’s Law: Worksheet Problem 3

Recent advances in process technology have quadrupled the
number of transistors you can fit on your processor die. Currently,
your key customer can use up to 4 processors for 40% of their
application.

You have two choices:

1. Increase the number of processors from 1 to 4.
2. Increase the number of processors from 1 to 2, but add

features to each processor that will allow the application to
use 2 processors for 80% of the execution time.

Which is the best choice?

Amdahl’s Corollary #4

By definition:

Speedup =
Latencyold
Latencynew

⇒ Latencynew = Latencyold ×
1

Speedup

By Amdahl’s Law:

Latencynew = Latencyold ×
1
1

(x
S+(1−x))

= Latencyold ×
(x

S + (1 − x)
)

Amdahl’s Law for Latency

Latencynew = Latencyold ×
(x

S
)
+ Latencyold × (1 − x)

Amdahl’s Non-Corollary

Amdahl’s law does not bound slowdown!

Lnew = Lold ×
(x

S
)
+ Lold × (1 − x) ⇒ Lnew ∝ x

S

Example: x = 0.01 of execution. Lold = 1.

• S = 0.001

Lnew = Lold × (0.01/0.001) + Lold × (1 − 0.01) ≈ 10 × Lold

• S = 0.00001

Lnew = Lold × (0.01/0.00001)+Lold × (1 − 0.01) ≈ 1000×Lold

• Things can only get so fast, but they can get arbitrarily slow.
• Do not hurt the non-common case too much!

Amdahl’s Law: Example

This one is tricky.

In your application, memory operations currently take 30% of the
execution time.

A new widget called “cache” speeds up 80% of memory operations
by a factor of 4.

A second new widget called “L2 cache” speeds up half of the
remaining memory operations by a factor of 2.

What is the total speedup?

Try Applying Each Optimization Independently…

Apply the L1 cache optimization first. SL1 = 4, xL1 = (0.8)(0.3).

SL1 =
1

xL1/SL1 + (1 − xL1)
=

1
0.8 · 0.3/4 + (1 − 0.8 · 0.3) = 1.2195

Then apply the L2 cache optimization. SL2 = 2,
xL2 = (0.3)(0.2)(0.5) = 0.03.

SL2 =
1

xL2/SL2 + (1 − xL2)
=

1
0.03/2 + (1 − 0.03) = 1.0152

Combine the speedups:

Stot = SL1 × SL2 = 1.015 × 1.2195 = 1.2347

Is this correct?

Answer in Pictures

73

L1

L1

sped

up

L

2

n

a

Not memory

L1

sped

up

n

a

Not memory

L

2

n

a
Not memory

Memory time

0.24 0.03 0.03 0.7

0.7

0.7

0.030.030.06

0.030.0150.06

Total = 0.82

Total = 1

Total = 0.805

85%4.2%4.2%8.6%

24% 3% 3% 70%

Speed up = 1.242OOPS:

Answer in Pictures

73

L1

L1

sped

up

L

2

n

a

Not memory

L1

sped

up

n

a

Not memory

L

2

n

a
Not memory

Memory time

0.24 0.03 0.03 0.7

0.7

0.7

0.030.030.06

0.030.0150.06

Total = 0.82

Total = 1

Total = 0.805

85%4.2%4.2%8.6%

24% 3% 3% 70%

Speed up = 1.242OOPS:

Amdahl’s Pitfall

You cannot naïvely apply optimizations one at a time with
Amdahl’s Law!

Combining the speedups using multiplication doesn’t work.

Why? After we compute the speedup for one optimization, the
execution time changes, so the fraction of execution that the next
optimization effects actually grows!

Multiple Optimizations Done Right

Amdahl’s Law for Multiple Disjoint Optimizations
Given n disjoint optimizations, each of which speed up xi of the
program by Si, the total speedup is given by

Stot =
1

x1
S1

+ x2
S2

+ · · ·+ xi
Si
+ (1 − x1 − x2 − · · · − xi)

It is important that the optimizations are disjoint, meaning that for
every (xi, xj) pair, Si and Sj must not apply to the same portion of
the execution.

Practice: Amdahl’s Law with Multiple Optimizations: Work-
sheet Problem 4

In your application, memory operations currently take 30% of the
execution time.

A new widget called “cache” speeds up 80% of memory operations
by a factor of 4.

A second new widget called “L2 cache” speeds up half of the
remaining memory operations by a factor of 2.

What is the total speedup?

Multiple Optimizations Done Right: Overlap

How can we deal with overlapping optimizations? Treat the
overlap as a separate portion of the execution and measure its
speedup independently.

Example: if we have two overlapping optimizations, then we would
have x1only, x2only, and x1&2; and S1only, S2only, and S1&2

Stot =
1

x1only
S1only

+
x2only
S2only

+ x1&2
S1&2

+ (1 − x1 − x2 − x1 & 2)

You can estimate S1&2 ≈ S1only × S2only, but the real value could
be higher or lower.

