
CSCI 564 Advanced Computer Architecture
Lecture 09: Handling Branches

Dr. Bo Wu (with modifications by Sumner Evans)
March 27, 2021

Colorado School of Mines

Fine-Grained Multithreading

Fine-Grained Multithreading I

Idea: hardware has multiple thread contexts. Each cycle, the fetch
engine fetches from a different thread.

• By the time the fetched branch/instruction resolves, no
instruction has been fetched from the same thread.

• The branch/instruction resolution latency is overlapped with
execution of other threads’ instructions.

• Pro: No logic is needed for handling control and
data dependencies within a thread

• Con: Single thread performance suffers
• Con: Extra logic for keeping thread contexts
• Con: Latencies do not overlap if there are not

enough threads to cover the whole pipeline.

Fine-Grained Multithreading II

• CDC 6600’s peripheral processing unit is fine-grained
multithreaded
• Thornton, Parallel Operation in the Control Data 6600, AFIPS

1964.
• Processor executes a different I/O thread every cycle
• An operation from the same thread is executed every 10 cycles

• Denelcor HEP (Heterogeneous Element Processor)
• Smith, A pipelined, shared resource MIMD computer, ICPP

1978.
• 120 threads/processor
• available queue vs. unavailable (waiting) queue for threads
• each thread can have only 1 instruction in the processor

pipeline; each thread independent
• to each thread, processor looks like a non-pipelined

machine
• system throughput vs. single thread performance tradeoff

Multithreading Pipeline Example

Credit: Joel Emer (MIT)

Sun Niagara Multithreaded Pipeline

Kongetira et al., Niagara: A 32-Way Multithreaded Sparc Processor, IEEE Micro 2005.

Fine-Grained Multithreading: Pros and Cons

Pros:

• No need for dependency checking between instructions (only one
instruction in pipeline from a single thread).

• No need for branch prediction logic.

• Cycles that would have to be bubbles/stalls can be used for executing
useful instructions from different threads.

• Improved system throughput, latency tolerance, and utilization.

Cons:

• Extra hardware complexity: multiple hardware contexts (PCs, register
files, …), thread selection logic.

• Reduced single thread performance (one instruction fetched every N
cycles from the same thread).

• Resource contention between threads in caches and memory.

• Some dependency checking logic between threads remains (load/store)

Branch Prediction

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC ??

WB

Branch Prediction: Guess the Next Instruction to
Fetch

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC ??

WB

Branch Prediction: Guess the Next Instruction to
Fetch

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC ??

WB

Branch Prediction: Guess the Next Instruction to
Fetch

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC ??

WB

Branch Prediction: Guess the Next Instruction to
Fetch

0x0004

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC

WB

Branch Prediction: Guess the Next Instruction to
Fetch

0x0005

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC

WB

Branch Prediction: Guess the Next Instruction to
Fetch

0x0006

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC

WB

Branch Prediction: Guess the Next Instruction to
Fetch

0x0007

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC

WB

Branch Prediction: Guess the Next Instruction to
Fetch

0x0008

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC

WB

Branch Prediction: Guess the Next Instruction to
Fetch

0x0008

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to
Fetch

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC ??

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to
Fetch

0x0004

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to
Fetch

0x0005

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to
Fetch

0x0006

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to
Fetch

0x0007

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to
Fetch

0x0008

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

D-$

PC

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to
Fetch

0x0008

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

12 cycles

8 cycles

D-$

PC

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to
Fetch

LD R0, MEM[R2]

LD R2, MEM[R2]

BRZERO 0x0001

Misprediction Penalty

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

ADD R3, R2, #1

0x0001

0x0002

0x0003

0x0004

MUL R1, R2, R3
0x0005

0x0006

0x0007

0x00030x00040x00050x00060x0007

D-$

PC

DEC WB

LD R0, MEM[R2]

LD R2, MEM[R2]

BRZERO 0x0001

Misprediction Penalty

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

ADD R3, R2, #1

0x0001

0x0002

0x0003

0x0004

MUL R1, R2, R3
0x0005

0x0006

Flush!!

0x0007

0x0003

D-$

PC

DEC WB

BRZERO 0x0001

Misprediction Penalty

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

0x0002

0x0003

D-$

PC

DEC WB

BRZERO 0x0001

Misprediction Penalty

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

0x0002

0x0003

D-$

PC

DEC WB

BRZERO 0x0001

Misprediction Penalty

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

0x0002

0x0003

D-$

PC

DEC WB

BRZERO 0x0001

Misprediction Penalty

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

0x0002

0x0003

D-$

PC

DEC WB

BRZERO 0x0001

Misprediction Penalty

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

0x0002

0x0003

D-$

PC

DEC WB

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

A

What to fetch next?

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B1 A

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B1 AD

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B1 ADE

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B1 ADEF

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B1 ADEF

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B1 ADEF

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B1 ADEF

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B1 ADEF

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B1 ADEF

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B1 ADEF

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B1 ADEF

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B1 ADEF

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Verify the Prediction

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Target Misprediction Detected! Flush the pipeline

Pipeline

A

B3B1

D

E

F

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B3

Fetch from the correct target

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction: Always PC+4

50

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

Insth is a branch

Branch Prediction: Always PC+4

51

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

Insth branch condition and target
evaluated in ALU

Insth is a branch

Branch Prediction: Always PC+4

52

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

Insth branch condition and target
evaluated in ALU

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

ALU
ID
IFtarget

MEM

Insth is a branch

Branch Prediction: Always PC+4

53

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

Insth branch condition and target
evaluated in ALU

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

ALU
ID
IFtarget

MEM

When a branch resolves
- branch target (Instk) is fetched
- all instructions fetched since
 insth (so called “ wrong-path”
 instructions) must be flushedInsth is a branch

Pipeline Flush on a Misprediction

54

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

IFtarget

MEM

killed
killed

Insth is a branch

Pipeline Flush on a Misprediction

55

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

IFtarget

MEM

ID
IF

WB

killed
killed

Insth is a branch

Pipeline Flush on a Misprediction

56

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

IFtarget

MEM

ID
IF

WB

killed
killed

ALU
ID
IF

ALU
ID
IF

WB

Insth is a branch

0x0008

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

12 cycles

8 cycles

D-$

PC

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to
Fetch

BRZERO 0x0001

Misprediction Penalty

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

0x0002

0x0003

D-$

PC

DEC WB

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

A

What to fetch next?

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B1 ADEF

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Verify the Prediction

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Target Misprediction Detected! Flush the pipeline

Pipeline

A

B3B1

D

E

F

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Pipeline

A

B3B1

D

E

F

B3

Fetch from the correct target

• Processors are pipelined to increase concurrency
• How do we keep the pipeline full in the presence of branches?

– Guess the next instruction when a branch is fetched
– Requires guessing the direction and target of a branch

Branch condition, TARGET

Branch Prediction: Always PC+4

50

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

Insth is a branch

Branch Prediction: Always PC+4

51

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

Insth branch condition and target
evaluated in ALU

Insth is a branch

Branch Prediction: Always PC+4

52

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

Insth branch condition and target
evaluated in ALU

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

ALU
ID
IFtarget

MEM

Insth is a branch

Branch Prediction: Always PC+4

53

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

Insth branch condition and target
evaluated in ALU

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

ALU
ID
IFtarget

MEM

When a branch resolves
- branch target (Instk) is fetched
- all instructions fetched since
 insth (so called “ wrong-path”
 instructions) must be flushedInsth is a branch

Pipeline Flush on a Misprediction

54

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

IFtarget

MEM

killed
killed

Insth is a branch

Pipeline Flush on a Misprediction

56

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU
ID
IFPC+8

IFtarget

MEM

ID
IF

WB

killed
killed

ALU
ID
IF

ALU
ID
IF

WB

Insth is a branch

Performance Analysis

• Correct guess → no penalty
• Incorrect guess → two bubbles
• So, if we assume

• no data-dependency-related stalls
• 20% control flow instructions
• 70% of control flow instructions are taken

we can calculate the CPI:

CPI = 1+ (0.2× 0.7)︸ ︷︷ ︸
probability of wrong guess

× 2︸︷︷︸
penalty for wrong guess

= 1+ 0.14× 2 = 1.28 .

Can we reduce either of these terms?

Reducing Branch Misprediction Penalty
• Resolve branch condition and target address

early

PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

CPI = [1 + (0.2*0.7) * 1] = 1.14[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Reducing Branch Misprediction Penalty
• Resolve branch condition and target address

early

PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

CPI = [1 + (0.2*0.7) * 1] = 1.14[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Reducing Branch Misprediction Penalty
• Resolve branch condition and target address

early

PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

CPI = [1 + (0.2*0.7) * 1] = 1.14[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is this a good idea?

Reducing Branch Misprediction Penalty
• Resolve branch condition and target address

early

PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

CPI = [1 + (0.2*0.7) * 1] = 1.14[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is this a good idea?

Branch Prediction (Enhanced)

Idea: predict the next fetch address (to be used in the next cycle)

This requires three things to be predicted at the fetch stage:

• Whether the fetched instruction is a branch
• (Conditional) branch direction
• Branch target address (if taken)

Observation: the target address remains the same for a
conditional direct branch across instances.

• Idea: add another cache!
• Store the target address from previous instance and access it

with the PC.
• This is called the Branch Target Buffer (BTB) or the Branch

Target Address Cache.

Fetch Stage with BTB and Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Fetch Stage with BTB and Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Address of the
current branch

target address

Fetch Stage with BTB and Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter hit?

Address of the
current branch

target address

Fetch Stage with BTB and Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

taken?

hit?

Address of the
current branch

target address

Fetch Stage with BTB and Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current branch

target address

Fetch Stage with BTB and Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current branch

Always taken CPI = [1 + (0.20*0.3) * 2] = 1.12 (70% of branches
taken)

More Sophisticated Branch Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

More Sophisticated Branch Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Address of the
current branch

target address

More Sophisticated Branch Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter hit?

Address of the
current branch

target address

More Sophisticated Branch Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR
hit?

Which direction earlier
branches went

Address of the
current branch

target address

More Sophisticated Branch Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

taken?

hit?

Which direction earlier
branches went

Address of the
current branch

target address

More Sophisticated Branch Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR
PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the
current branch

target address

Fetch Stage with BTB and Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current branch

Always taken CPI = [1 + (0.20*0.3) * 2] = 1.12 (70% of branches
taken)

target address

More Sophisticated Branch Direction
Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR
PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the
current branch

Three Things to be Predicted

Recall there are three things which need to be predicted at the
fetch stage:

• Whether the fetched instruction is a branch
• (Conditional) branch direction
• Branch target address (if taken)

We can accomplish (3) using a BTB
• We remember the target address computed the last time the branch was

executed

We can accomplish (1) using a BTB
• If the BTB has an entry for the program counter, then it must be a

branch.
• Alternatively, we can store branch metadata bits in the instruction cache

But how do we accomplish (2)?

Branch Direction Prediction

• Compile-time (static)
• Always not taken
• Always taken
• BTFN (backwards taken, forward not taken)
• Profile-based (likely direction)
• More advanced: program-analysis-based (likely direction)
• Programmer-based

• Run time (dynamic)
• Last time prediction (single bit)
• More advanced: two-bit counter based prediction
• More advanced: two-level prediction (global vs. local)
• Hybrid

Static Branch Prediction

Simple Schemes

• Always not-taken
• Simple to implement: no need for BTB, no direction prediction
• Low accuracy: ∼ 30− 40% (for conditional branches)
• The compiler can layout code such that the likely path is the

“not-taken” path which will lead to more effective prediction.
• Always taken

• No direction prediction
• Better accuracy: ∼ 60− 70% (for conditional branches)

• Backwards branches (mostly loop branches) are usually taken
• Backwards branch: target address is lower than branch

instruction’s PC

• Backwards taken, forward not-taken (BTFN)
• Predict backwards (loop) branches are taken, others are

not-taken

Practice: Static Branch Prediction: Worksheet Problem 1

Consider the following code once it reaches steady-state:

do {
for (int i = 0; i < 4; i++) {

// increment something
}
for (int j = 0; j < 8; j++) {

// increment something
}
k++;

} while (k < 1000000000)

a. What is the branch prediction accuracy for an always
not-taken (PC+4 prediction) branch predictor?

b. What is the branch prediction accuracy for an always taken
branch predictor?

Profile Based

Idea: the compiler determines the likely direction for each
branch using a profiling run. Then it encodes the direction as a
hint bit in the branch instruction format.

• Pro: per-branch prediction (more accurate than simple
schemes) are accurate if profile is representative. :

• Con: requires hint bits in the branch instruction format
• Con: accuracy depends on dynamic branch behavior:

• TTTTTTTTTTNNNNNNNNNN → 50% accuracy
• TNTNTNTNTNTNTNTNTNTN → 50% accuracy

• Con: accuracy depends on the representativeness of the profile
input set

Program-Based

Idea: use heuristics based on program analysis to determine
statically-predicted direction

• Example opcode heuristic: predict BLEZ as not-taken
(negative integers used as error values in many programs)

• Example loop heuristic: predict a branch guarding a loop
execution as taken (i.e., predict the loop will execute)

• Pointer and floating-point comparisons: predict not equal

• Pro: does not require profiling
• Con: heuristics may not be representative or could just be

incorrect
• Con: requires compiler analysis and ISA support

Ball and Larus, Branch prediction for free, PLDI 1993. (20%
misprediction rate)

Programmer-Based

Idea: the programmer provides the statically-predicted
direction

This can be done via pragmas in the programming language that
qualify a branch as likely-taken versus not-likely-taken.

• Pro: does not require profiling or program analysis
• Pro: programmer may know some branches in their program

better than other analysis techniques
• Con: requires programming language, complier, and ISA

support
• Con: burdens the programmer

Sidebar: Pragmas

Pragmas are keywords that enable a programmer to convey hints
to lower levels of the transformation hierarchy.
For example:

if (likely(x)) { ... }
if (unlikely(x)) { ... }

Many other hints an optimizations can be enabled with pragmas.
For example, whether or not a loop can be parallelized. For
example:

#pragma omp parellel

explicitly instructs the compiler to parallelize the given segment of
code.

Combining Approaches

All of the previous techniques can be combined: profile-, program-,
and programmer-based.

How might you do that?

All of these techniques have one main disadvantage in common:
they cannot adapt to dynamic changes in branch behavior!

• This can be mitigated by a dynamic compiler, but not at a
fine granularity (and a dynamic compiler has overhead).

• What is a dynamic compiler?
• Self-optimizing code
• Java JIT (just-in-time) compiler, the .NET CLR (common

language runtime), V8 (JavaScript JIT), PyPy (Python JIT)

Dynamic Branch Prediction

Dynamic Branch Prediction

Idea: predict branches based on dynamic information
(collected at runtime).

Pros

• Prediction based on history of the execution of branches
• It can adapt to dynamic changes in branch behavior
• No need for static profiling: input set representativeness

problems go away!

Disadvantages

• More complex (requires more hardware)

Dynamic Branch Prediction: Last-Time Predictor

A last time predictor stores a single bit per branch in the BTB
indicating which direction the branch went last time it executed.

TTTTTTTTTTNNNNNNNNNN branch pattern results in 90% accuracy.

This predictor always mispredicts the last iteration and the first
iteration of a loop branch. Thus, the accuracy for a loop with N
iterations is (N − 2)/N.

Pro: loop branches for loops with large number of iterations

Con: loop branches for loops with small number of iterations.
TTTTTTTTTTNNNNNNNNNN branch pattern results in 90% accuracy.

CPI: 1+ (0.2× 0.15︸︷︷︸
assume 85% accuracy

)× 2 = 1.06

Last-Time Predictor: Implementation

The 1-bit Branch History Table (BHT) entry is updated with the
correct outcome each execution of a branch.

Last-Time Predictor: State Machine

predict
not taken

predict
taken

actually not taken actually taken

actually taken

actually not taken

Practice: Dynamic Branch Prediction: Worksheet Problem 2

Consider the following code once it reaches steady-state:

do {
for (int i = 0; i < 4; i++) {

// increment something
}
for (int j = 0; j < 8; j++) {

// increment something
}
k++;

} while (k < 1000000000)

a. What is the branch prediction accuracy for a 1-bit branch
predictor?

Last-Time Predictor: Problem

A last-time predictor changes its prediction from T to NT or NT to T
too quickly (even if the branch is mostly taken or mostly
not-taken).

Idea: add hysteresis to the predictor so that prediction
doesn’t change on a single different outcome.

• Use two bits to track history of predictions for a branch
instead of a single bit

• Can have two states for T or NT instead of one state for each

(See: Smith, A Study of Branch Prediction Strategies, ISCA 1981.)

Dynamic Branch Prediction: Two-Bit Counter (2BC) Predictor

• Also called bimodal prediction
• Each branch is associated with a two-bit counter
• One more bit provides hysteresis
• A strong prediction does not change with one single different

outcome

Accuracy for a loop with N iterations = (N − 1)/N. And the
TNTNTNTNTNTNTNTNTNTN pattern results in 50% accuracy
(assuming counter is initialized to weakly taken)

Pro: better prediction accuracy

• CPI: 1+ (0.2× 0.1)× 2 = 1.04 (asuming 90% accuracy)

Con: more hardware cost

Two-Bit Predictor: State Machine

predict
taken 11

predict
taken 10

predict
!taken
01

predict
!taken
00

actually
taken

actually !taken

actually taken
actually taken

actually !taken

actually !taken

actually !taken

actually
!taken

Two-Bit Predictor: State Machine

strongly
taken

weakly
taken

weakly
!taken

strongly
!taken

actually
taken

actually !taken

actually taken
actually taken

actually !taken

actually !taken

actually !taken

actually
!taken

Practice: Dynamic Branch Prediction: Worksheet Problem 2

Consider the following code once it reaches steady-state:

do {
for (int i = 0; i < 4; i++) {

// increment something
}
for (int j = 0; j < 8; j++) {

// increment something
}
k++;

} while (k < 1000000000)

b. What is the branch prediction accuracy for a 2-bit branch
predictor?

Two-Bit Predictor: Is This Enough?

• We can achieve ∼ 85− 90% accuracy for many programs with
two-bit counter based prediction

• Is this good enough?
• Let’s quantify the branch problem.

Quantifying the Branch Problem

Back to the Drawing Board

Control flow instructions (branches) are frequent (15-20%) of all
instructions.

Problem: next fetch address after a control-flow instruction is
determined after N cycles in a pipelined processor.

• N cycles: (minimum) branch resolution latency
• Stalling on a branch wastes instruction processing bandwidth

(that is, it reduces IPC)
• N × W instruction slots are wasted (W: pipeline width)

So, we use branch prediction to try and fill up the pipeline after
the branch.

Problem: we need to determine the next fetch address when the
branch is fetched (to avoid a pipeline bubble)

Importance of the Branch Problem

Assume a 5-wide superscalar pipeline with 20-cycle branch
resolution latency.

• How long does it take to fetch 500 instructions?
• 100% accuracy

• 100 cycles (all instructions fetched on the correct path)
• No wasted work

• 99% accuracy
• 100 (correct path) + 20 (wrong path) = 120 cycles
• 20% extra instructions fetched

• 98% accuracy
• 100 (correct path) + 20 * 2 (wrong path) = 140 cycles
• 40% extra instructions fetched

• 95% accuracy
• 100 (correct path) + 20 * 5 (wrong path) = 200 cycles
• 100% extra instructions fetched

Global and Local Branch Prediction

Global and Local Branch Prediction: Intuition

Realization 1: A branch’s outcome can be correlated with other
branches’ outcomes.

• Global branch correlation

Realization 2: A branch’s outcome can be correlated with past
outcomes of the same branch (other than the outcome of the
branch “last-time” it was executed).

• Local branch correlation

Global Branch Correlation I

Recently executed branch outcomes in the execution path are
correlated to the outcome of the next branch.
Example: if first branch taken (false), then second branch taken
(false):

if (cond1)
...

if (cond1 && cond2)
...

Example: if first branch not taken (true), then second branch is
definitely taken (false):

if (cond1) a = 2;
...
if (a == 0) ...

Global Branch Correlation II

if (cond1) // branch X
...
if (cond2) // branch Y
...
if (cond1 && cond2) // branch Z

• if X or Y are taken, then Z is also taken
• if X and Y are not taken, then Z is also not taken

Global Branch Correlation III

From Eqntott, SPEC 1992

if (aa == 2) // B1
aa=0;

if (bb==2) // B2
bb=0;

if (aa!=bb) { // B3
...

}

• If B1 is not taken (i.e., aa == 0 @ B3) and B2 is not taken
(i.e. bb = 0 @ B3), then B3 is certainly taken

Capturing Global Branch Correlation

Idea: associate branch outcomes with global T/NT history
of all branches.

In other words: make a prediction based on the outcome of the
branch the last time the same global branch history was
encountered.

Implementation:

• Keep track of the “global T/NT history” of all branches in a
Global History Register (GHR).

• Use GHR to index into a Pattern History Table that recorded
the outcome that was seen for each GHR value in the recent
past.

Now we have a global history/branch predictor. It uses two levels
of history (GHR + history at that GHR).

Two-Level Global Branch Prediction

• Global Branch History Register (N bits) — stores the direction
of the last N branches.

• Table of saturating counters for each history entry — stores
the direction the branch took the last time the same history
was seen.

Yeh and Patt, Two-Level Adaptive Training Branch Prediction, MICRO 1991.

How Does the Global Predictor Work?

Consider the following code:

for (int i = 0; i < 100; i++)
for (int j = 0; j < 3; j++)

...

After the initial startup time, the conditional branches have the
following behaviour (assuming GR is shifted to the left):

test value GR result
j < 3 j=1 1101 taken
j < 3 j=2 1011 taken
j < 3 j=3 0111 not taken

i < 100 1110 usually taken
McFarling, Combining Branch Predictors, DEC WRL TR 1993.

Practice: Global vs. Local Branch Prediction: Worksheet Prob-
lem 3

Consider the following code once it reaches steady-state:

do {
for (int i = 0; i < 4; i++) {

// increment something
}
for (int j = 0; j < 8; j++) {

// increment something
}
k++;

} while (k < 1000000000)

Assume that the PHT contains 2-bit counters.

a. What is the branch prediction accuracy for a global branch
predictor with a 5-bit history?

Global Branch Predictor: How Large Must it Be?

Question: How much storage will it take to store a global
predictor that uses 3-bit counters and that produces an index by
XOR-ing 12 bits of branch PC with 12 bits of global history?

The index is 12 bits wide, so the table has 212 counters. Each
counter is 3 bits wide. Thus, the total required is:

3× 212 = 12 Kib or 1.5 KiB

Intel Pentium Pro Branch Predictor

• 4-bit global history register
• Multiple pattern history tables (of 2-bit counters)

• The pattern history table to use is determined by lower-order
bits in the branch address.

Improving Global Predictor Accuracy

Idea: add more context information to the global predictor
to take into account which branch is being predicted.

• Gshare predictor because the GHR and branch PC are XORed.
• Pro: more context information
• Pro: better utilization of the PHT
• Con: increases access latency

McFarling, Combining Branch Predictors, DEC WRL TR 1993.

Review: One-Level Branch Predictor
Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Review: One-Level Branch Predictor
Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Address of the
current instruction

Review: One-Level Branch Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter hit?

Address of the
current instruction

Review: One-Level Branch Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

taken?

hit?

Address of the
current instruction

Review: One-Level Branch Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current instruction

Two-Level Global History Branch
Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Two-Level Global History Branch
Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Address of the
current instruction

Two-Level Global History Branch
Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter hit?

Address of the
current instruction

Two-Level Global History Branch
Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

hit?

Which direction earlier
branches went

Address of the
current instruction

Two-Level Global History Branch
Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

taken?

hit?

Which direction earlier
branches went

Address of the
current instruction

Two-Level Global History Branch
Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the
current instruction

Two-Level Gshare Branch Predictor
Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Two-Level Gshare Branch Predictor
Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Address of the
current instruction

Two-Level Gshare Branch Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter hit?

Address of the
current instruction

Two-Level Gshare Branch Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR
hit?

Which direction earlier
branches went

Address of the
current instruction

Two-Level Gshare Branch Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

taken?

hit?

Which direction earlier
branches went

Address of the
current instruction

Two-Level Gshare Branch Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR
PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the
current instruction

Review: One-Level Branch Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current instruction

Two-Level Global History Branch
Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the
current instruction

Two-Level Gshare Branch Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR
PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the
current instruction

Can We Do Better?

• Last-time and 2BC predictors exploit only “last-time”
predictability for a given branch.

• Realization 1: a branch’s outcome can be correlated with
other branches’ outcomes.
This leads to favouring global branch prediction.

• Realization 2: a branch’s outcome can be correlated with
past outcomes of the same branch (in addition to the
outcome of the branch last time it was executed).
This leads to favouring local branch prediction.

Local Branch Correlation

Consider the following code:

for (int i = 1; i <= 4; i++) { ... }

If the loop test is done at the end of the body, the corresponding
branch will execute the pattern will be TTTN (T = taken, N = not
taken).

Say we run this loop n times. We don’t know how the loop
behaves the first time the loop is run. However, on subsequent
loop runs, if we know the direction this branch had gone on
the previous three executions, then we could always be able
to predict the next branch direction.

McFarling, Combining Branch Predictors, DEC WRL TR 1993.

Capturing Local Branch Correlation

Idea: have a per-branch history register

• Similar to the global history register.
• Associate the predicted outcome of a branch with the “T/NT

history” of the same branch.

This will make a prediction based on the outcome of the branch
last time the same local branch history was encountered.

• This is called the local history branch predictor
• It requires two levels of history:

1. per-branch history register
2. history at that history register value

Two-Level Local Branch Prediction

• First level: A set of local history registers (N bits each)
We select which local history register to use based on the PC
of the branch.

• Second level: table of saturating counters for each history
item.
We use this to see the direction the branch took the last time
the same history was seen.

Yeh and Patt, Two-Level Adaptive Training Branch Prediction, MICRO 1991.

Two-Level Local History Branch
Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current instruction

Two-Level Local History Branch
Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current instruction

Which directions earlier instances of *this branch* went

Two-Level Local History Branch
Predictor

target address

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch
Address

hit?

Address of the
current instruction

Which directions earlier instances of *this branch* went

Practice: Global vs. Local Branch Prediction: Worksheet Prob-
lem 3

Consider the following code once it reaches steady-state:

do {
for (int i = 0; i < 4; i++) {

// increment something
}
for (int j = 0; j < 8; j++) {

// increment something
}
k++;

} while (k < 1000000000)

Assume that the PHT contains 2-bit counters.

b. What is the branch prediction accuracy for a local branch
predictor with a 5-bit history?

Additional Considerations

Hybrid Branch Predictors

Idea: use more than one type of predictor (multiple
algorithms) and select the “best” prediction.

For example, a hybrid of 2-bit counters and a global predictor.

Pros:

• Better accuracy: different predictors are better for different
branches.

• Reduced warmup time (faster-warmup predictor used until the
slower-warmup predictor is warm)

Cons:

• Need meta-predictor or selector
• Results in longer access latency

McFarling, Combining Branch Predictors, DEC WRL TR 1993.

Alpha 21264 Tournament Predictor

• Minimum branch penalty: 7 cycles
• Typical branch penalty: 11+ cycles
• 48K bits of target addresses stored in I-cache
• Predictor tables are reset on a context switch

Kessler, The Alpha 21264 Microprocessor, IEEE Micro 1999.

Branch Prediction Accuracy (Example)

Biased Branches

Observation: many branches are biased in one direction (example:
99% taken)

Problem: these branches pollute the branch prediction structures.
This makes prediction of the other branches more difficult by
causing “interference” in branch prediction tables and history
registers.

Solution: detect such biased branches, and predict them with a
simpler predictor.

Chang et al., Branch classification: a new mechanism for
improving branch predictor performance, MICRO 1994.

Predicated Execution: What is Predication? i

Idea: compiler converts control dependence into data
dependence, thus eliminating the branch!

• Each instruction must have a predicate bit set based on the
predicate computation.

• Only instructions with true predicates are committed (others
turned into NOPs).

Predicated Execution: What is Predication? ii

if (cond) {
b = 0;

}
else {

b = 1;
}
x = b + 1;

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

A

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

B A

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

C B A

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

C BD A

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

D C BE A

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

E D CF B A

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

F E D C B A

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

E D C B AF

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

F E D C B A

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

F E D C AB

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

F E D ABC

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

F E ABCD

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

AF BCDE

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

E

F

Predicated Execution

nop

AF BCDE

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

E D BF

nop

Fetch Decode Rename Schedule RegisterRead Execute

AF BCDE

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D BF

nop

Fetch Decode Rename Schedule RegisterRead Execute

AF BCDE

Predicated Execution (II)
• Predicated execution can be high

performance and energy-efficient

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D BF

nop

Fetch Decode Rename Schedule RegisterRead Execute

AF BCDE

Predicated Execution: Pros and Cons

Pros:

• Eliminates mispredictions for hard-to-predict branches.

Cons:

• Causes useless work for branches that are easy to predict.
• Additional hardware and ISA support.
• Cannot eliminate all hard-to-predict branches.

Conditional Execution in the ARM ISA

• Almost all ARM instructions can include an optional condition
code.

• An instruction with a condition code is executed only if the
condition code flags meet the specified condition.

Wish Branches: Best of Both Worlds?

Wouldn’t it be nice if the branch is eliminated (predicated) only
when it would actually be mispredicted, and is predicted when it
would actually be correctly predicted?

Enter wish branches.

• The compiler generates code (with wish branches) that can
be executed either as predicated or non-predicated code
(normal branch code).

• The hardware decides to execute predicated code or normal
branch code at run-time based on the confidence of the
branch prediction.

• Easy-to-predict → use normal branch code
• Hard-to-predict → use predicated code

Kim et al., Wish Branches: Enabling Adaptive and Aggressive Predicated Execution, MICRO 2006, IEEE Micro

Top Picks, Jan/Feb 2006.

TARGET:
 (p1) mov b,0

(!p1) mov b,1
 wish.join !p1 JOIN

Wish Jump/Join

 p1 = (cond)
 branch p1, TARGET

C B

D

A
T N

 mov b, 1
 jmp JOIN

TARGET:
 mov b,0

normal branch code

A

B

C

B

C

D

A

 p1 = (cond)

(!p1) mov b,1

 (p1) mov b,0

predicated code

A

B

C

wish jump/join code

B

A

C

D

wish jump

 p1=(cond)
 wish.jump p1 TARGET

A

B

C

wish join

DJOIN:

TARGET:
 (p1) mov b,0

(!p1) mov b,1
 wish.join !p1 JOIN

Wish Jump/Join

 p1 = (cond)
 branch p1, TARGET

C B

D

A
T N

 mov b, 1
 jmp JOIN

TARGET:
 mov b,0

normal branch code

A

B

C

wish jump/join code

B

A

C

D

wish jump

 p1=(cond)
 wish.jump p1 TARGET

A

B

C

wish join

DJOIN:

Wish Jump/Join

 p1 = (cond)
 branch p1, TARGET

C B

D

A
T N

 mov b, 1
 jmp JOIN

TARGET:
 mov b,0

normal branch code

A

B

C

wish jump/join code

B

A

C

D

wish jump

 p1=(cond)
 wish.jump p1 TARGET

A

wish join

High Confidence

Taken

TARGET:
 (1) mov b,0

Wish Jump/Join

 p1 = (cond)
 branch p1, TARGET

C B

D

A
T N

 mov b, 1
 jmp JOIN

TARGET:
 mov b,0

normal branch code

A

B

C

wish jump/join code

B

A

C

D

wish jump

 p1=(cond)
 wish.jump p1 TARGET

A

C

wish join

High Confidence

Taken

TARGET:
 (1) mov b,0

Wish Jump/Join

 p1 = (cond)
 branch p1, TARGET

C B

D

A
T N

 mov b, 1
 jmp JOIN

TARGET:
 mov b,0

normal branch code

A

B

C

wish jump/join code

B

A

C

D

wish jump

 p1=(cond)
 wish.jump p1 TARGET

A

C

wish join

DJOIN:

High Confidence

Taken

(1) mov b,1
 wish.join (1) JOIN

Wish Jump/Join

 p1 = (cond)
 branch p1, TARGET

C B

D

A
T N

 mov b, 1
 jmp JOIN

TARGET:
 mov b,0

normal branch code

A

B

C

wish jump/join code

B

A

C

D

wish jump

 p1=(cond)
 wish.jump p1 TARGET

A

B

wish join

High Confidence

Not-T
aken

(1) mov b,1
 wish.join (1) JOIN

Wish Jump/Join

 p1 = (cond)
 branch p1, TARGET

C B

D

A
T N

 mov b, 1
 jmp JOIN

TARGET:
 mov b,0

normal branch code

A

B

C

wish jump/join code

B

A

C

D

wish jump

 p1=(cond)
 wish.jump p1 TARGET

A

B

wish join

DJOIN:

High Confidence

Not-T
aken

TARGET:
 (p1) mov b,0

(!p1) mov b,1
 wish.join !p1 JOIN

Low Confidence
Wish Jump/Join

B

C

D

A

 p1 = (cond)

(!p1) mov b,1

 (p1) mov b,0

predicated code

A

B

C

wish jump/join code

B

A

C

D

wish jump

 p1=(cond)
 wish.jump p1 TARGET

A

B

C

wish join

DJOIN:

TARGET:
 (p1) mov b,0

(!p1) mov b,1
 wish.join !p1 JOIN

Low Confidence
Wish Jump/Join

B

C

D

A

 p1 = (cond)

(!p1) mov b,1

 (p1) mov b,0

predicated code

A

B

C

wish jump/join code

B

A

C

D

wish jump

 p1=(cond)
 wish.jump p1 TARGET

A

B

C

wish join

DJOIN:

nop

nop

Dual-Path Execution versus Predication

A

BC

D

E

F

Dual-Path Execution versus Predication

Hard to predictA

BC

D

E

F

Dual-Path Execution versus Predication

Hard to predictA

BC

D

E

F

Dual-path

Dual-Path Execution versus Predication

Hard to predict

C

A

BC

D

E

F

path 1

Dual-path

Dual-Path Execution versus Predication

Hard to predict

C B

A

BC

D

E

F

path 1 path 2

Dual-path

Dual-Path Execution versus Predication

Hard to predict

C

D

B

D

A

BC

D

E

F

path 1 path 2

Dual-path

Dual-Path Execution versus Predication

Hard to predict

C

D

E

B

D

E

A

BC

D

E

F

path 1 path 2

Dual-path

Dual-Path Execution versus Predication

Hard to predict

C

D

E

F

B

D

E

F

A

BC

D

E

F

path 1 path 2

Dual-path

Dual-Path Execution versus Predication

Hard to predict

C

D

E

F

B

D

E

F

A

BC

D

E

F

path 1 path 2

Dual-path

Dual-Path Execution versus Predication

Hard to predict

C

D

E

F

B

D

E

F

A

BC

D

E

F

path 1 path 2

Dual-path

Dual-Path Execution versus Predication

Hard to predict

C

D

E

F

B

D

E

F

A

BC

D

E

F

path 1 path 2

Dual-path

	Fine-Grained Multithreading
	Branch Prediction
	Static Branch Prediction
	Dynamic Branch Prediction
	Quantifying the Branch Problem
	Global and Local Branch Prediction
	Additional Considerations

