
Matrix Cryptographic Key Infrastructure

Sumner Evans
21 September 2024

Beeper (Automattic)

Matrix Cryptographic Key Infrastructure

Sumner Evans
21 September 2024

Beeper (Automattic)

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

1. Hello, my name is Sumner, I’m a software engineer at Automattic working on Beeper.
2. End-to-end encryption is one of the things which brought me to Matrix, and I’m sure that it’s one of the factors that brought many of you to

Matrix as well.
3. However, Matrix’s user experience with cryptography is often confusing.
4. I mainly blame the other chat networks for their incompetence.
5. Most other chat networks don’t provide any cryptographically-guaranteed security and privacy.
6. Of the ones that do, most do so in a way that does not truly leave the user in control of their keys.
7. Only a few networks, namely Signal, truly leave the user in control, and their UX is arguably worse than Matrix.
8. In this talk, my goal is to discuss the cryptographic key infrastructure in Matrix.
9. What do I mean by “infrastructure”? I mean all of the features which support key sharing and identity verification, but don’t actually

themselves provide security.
10. You can think of this talk as discussing the “UX layer of cryptography in Matrix”. None of the things that I’m going to discuss are strictly

necessary for ensuring secure communication, but without them, Matrix’ UX would be horrible.

Why Cryptography?

Matrix uses cryptography for two main purposes:

1. Message Security— only the people who are part of the conversation should be
allowed to view messages of the conversation.

2. Identity— verifying that a user or device is who they say they are.

2

Why Cryptography?

Matrix uses cryptography for two main purposes:

1. Message Security— only the people who are part of the conversation should be
allowed to view messages of the conversation.

2. Identity— verifying that a user or device is who they say they are.

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Why Cryptography?

1. Now, let’s discuss what Matrix even uses cryptography for. There are two main purposes...
2. The first ismessage security. We only want the people who are part of the conversation to be able to read the messages in the conversation.
3. As an additional benefit of how Matrix achieves this, encrypted messages cannot be tampered with by aman-in-the-middle actor without

the receiving party knowing.
4. The second reason for using cryptography in Matrix is identity verification. We want to know that a specific device or user is who they say

they are.
5. Note that one of the most important uses for identity verification is verifying your own devices so you can share keys with them.

Why Cryptography?

Matrix uses cryptography for two main purposes:

1. Message Security— only the people who are part of the conversation should be
allowed to view messages of the conversation.

2. Identity— verifying that a user or device is who they say they are.

2

Why Cryptography?

Matrix uses cryptography for two main purposes:

1. Message Security— only the people who are part of the conversation should be
allowed to view messages of the conversation.

2. Identity— verifying that a user or device is who they say they are.

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Why Cryptography?

1. Now, let’s discuss what Matrix even uses cryptography for. There are two main purposes...
2. The first ismessage security. We only want the people who are part of the conversation to be able to read the messages in the conversation.
3. As an additional benefit of how Matrix achieves this, encrypted messages cannot be tampered with by aman-in-the-middle actor without

the receiving party knowing.
4. The second reason for using cryptography in Matrix is identity verification. We want to know that a specific device or user is who they say

they are.
5. Note that one of the most important uses for identity verification is verifying your own devices so you can share keys with them.

Why Cryptography?

Matrix uses cryptography for two main purposes:

1. Message Security— only the people who are part of the conversation should be
allowed to view messages of the conversation.

2. Identity— verifying that a user or device is who they say they are.

2

Why Cryptography?

Matrix uses cryptography for two main purposes:

1. Message Security— only the people who are part of the conversation should be
allowed to view messages of the conversation.

2. Identity— verifying that a user or device is who they say they are.

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Why Cryptography?

1. Now, let’s discuss what Matrix even uses cryptography for. There are two main purposes...
2. The first ismessage security. We only want the people who are part of the conversation to be able to read the messages in the conversation.
3. As an additional benefit of how Matrix achieves this, encrypted messages cannot be tampered with by aman-in-the-middle actor without

the receiving party knowing.
4. The second reason for using cryptography in Matrix is identity verification. We want to know that a specific device or user is who they say

they are.
5. Note that one of the most important uses for identity verification is verifying your own devices so you can share keys with them.

Big Picture

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key
MAC Key

AES Key/IV
AES Key/IVJSON Encode

Ciphertext MAC

CiphertextMAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

3

Big Picture

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key
MAC Key

AES Key/IV
AES Key/IVJSON Encode

Ciphertext MAC

CiphertextMAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Big Picture

1. Let’s take a look at what we are going to talk about today. This diagram shows how those core features are implemented as well as the
infrastructure that supports them.

2. I know, it’s pretty overwhelming. But don’t worry, we are going to go step-by-step through this. By the end of the talk you should have an
understanding of what each part of this diagram means.

3. It’s probably too small to read, but I want to start by orienting ourselves to what’s going on in this diagram, and we will zoom in later.
4. You can see that there are two users represented in the diagram: Bob on the top and Alice on the bottom. The diagram is focused on how

the Megolm session created by Alice Device 1 is shared to Bob and to Alice’s Device 2.
5. You’ll notice that the diagram is color-coded.

– Red nodes represent data that does not leave the device.
– Green nodes represent data is public and can be shared with the server and other users.
– Orange nodes represent data that can be shared with trusted parties, or with members of the same Matrix room.
– Blue and purple nodes represent cryptographic operations.

Big Picture: Message Security

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

4

Big Picture: Message Security

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Big Picture: Message Security

1. It’s important that we don’t loose sight of the reason for all of this infrastructure. Highlighted in orange, we have the core of Matrix
security: the Megolm session.

2. We aren’t going to discuss this in detail today. I wrote an article about Megolm which you can find on my blog if you want to learn more. I’ll
provide a link at the end of the talk.

3. For now, the only thing you need to know about it is that it’s what is used to encrypt and decrypt messages.
4. The Megolm session needs to be shared with all the devices that Alice wants to be able to read her messages. So it needs to be shared to

– the devices of other users in the Matrix room (in this case Bob)
– as well as her other devices.

5. All of the rest of the infrastructure in this diagram is to facilitate transferring that Megolm session, or verifying that a device should in fact
have access to that Megolm session.

Big Picture: Identity

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

5

Big Picture: Identity

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Big Picture: Identity

1. Let’s move on to identity. The highlighted parts of the diagram provide a cryptographic way to verify that a device belongs to a particular user.
2. There are actually two pieces here...

Big Picture: Identity: Device Verification

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

6

Big Picture: Identity: Device Verification

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Big Picture: Identity: Device Verification

1. Here we have the infrastructure necessary for determining if we trust another device for our own user.

Big Picture: Identity: User Verification

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

7

Big Picture: Identity: User Verification

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Big Picture: Identity: User Verification

1. And here we have the infrastructure necessary for determining if we trust another user and their devices.

Big Picture: The Other Stuff

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

8

Big Picture: The Other Stuff

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Big Picture: The Other Stuff

1. So what is all of the other stuff? That is the infrastructure for sharing the Megolm session around to other devices and users.

Big Picture: The Other Stuff: To-Device

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

9

Big Picture: The Other Stuff: To-Device

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Big Picture: The Other Stuff: To-Device

1. For example, in this arrow represents sending the Megolm session via Olm-encrypted to-device messages.

Big Picture: The Other Stuff: Key Backup

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

10

Big Picture: The Other Stuff: Key Backup

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Big Picture: The Other Stuff: Key Backup

1. This lower-right section of the diagram represents key backup which allows you to backup your keys to the server and restore from your
other devices.

Big Picture: The Other Stuff: Secure Secret Storage and Sharing

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

11

Big Picture: The Other Stuff: Secure Secret Storage and Sharing

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Big Picture: The Other Stuff: Secure Secret Storage and Sharing

1. And over here on the left we have the infrastructure necessary for storing secrets on the server encrypted by a recovery code.

Big Picture

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key
MAC Key

AES Key/IV
AES Key/IVJSON Encode

Ciphertext MAC

CiphertextMAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

12

Big Picture

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key
MAC Key

AES Key/IV
AES Key/IVJSON Encode

Ciphertext MAC

CiphertextMAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Big Picture

1. So, that’s a quick overview of this diagram.
2. Before we dive deeper into the details of the diagram, we need to discuss some basic cryptography primitives.
3. Then we will break down the diagram into manageable pieces.

Cryptography Crash Course

Cryptography Crash Course

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

I will try and explain the cryptography primitives in simple terms. It’s not going to be mathematically rigorous, but will focus on the functionality

that each cryptographic primitive provides.

Encryption: Symmetric vs Asymmetric

There are two main categories of encryption schemes:

• Symmetric— both the encryptor and the decryptor share the same key and
that key is used in both the encryption and decryption of the message

• Asymmetric— the encryptor needs the public key, and the decryptor needs
the private key and the encryptor encrypts the message with the public key, and
the private key is required to decrypt the message

13

Encryption: Symmetric vs Asymmetric

There are two main categories of encryption schemes:

• Symmetric— both the encryptor and the decryptor share the same key and
that key is used in both the encryption and decryption of the message

• Asymmetric— the encryptor needs the public key, and the decryptor needs
the private key and the encryptor encrypts the message with the public key, and
the private key is required to decrypt the message

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Encryption: Symmetric vs Asymmetric

1. Let’s start with encryption. Encryption allows us to make a message that can only be read by another user who has the key.
2. Let’s start with encryption. Encryption allows us to make a message that can only be read by another user who has the key.

Encryption: Symmetric vs Asymmetric

There are two main categories of encryption schemes:

• Symmetric— both the encryptor and the decryptor share the same key and
that key is used in both the encryption and decryption of the message

• Asymmetric— the encryptor needs the public key, and the decryptor needs
the private key and the encryptor encrypts the message with the public key, and
the private key is required to decrypt the message

13

Encryption: Symmetric vs Asymmetric

There are two main categories of encryption schemes:

• Symmetric— both the encryptor and the decryptor share the same key and
that key is used in both the encryption and decryption of the message

• Asymmetric— the encryptor needs the public key, and the decryptor needs
the private key and the encryptor encrypts the message with the public key, and
the private key is required to decrypt the message

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Encryption: Symmetric vs Asymmetric

1. Matrix uses Advanced Encryption Scheme or AES for its symmetric encryption needs.

Encryption: Symmetric vs Asymmetric

There are two main categories of encryption schemes:

• Symmetric— both the encryptor and the decryptor share the same key and
that key is used in both the encryption and decryption of the message

• Asymmetric— the encryptor needs the public key, and the decryptor needs
the private key and the encryptor encrypts the message with the public key, and
the private key is required to decrypt the message

13

Encryption: Symmetric vs Asymmetric

There are two main categories of encryption schemes:

• Symmetric— both the encryptor and the decryptor share the same key and
that key is used in both the encryption and decryption of the message

• Asymmetric— the encryptor needs the public key, and the decryptor needs
the private key and the encryptor encrypts the message with the public key, and
the private key is required to decrypt the message

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Encryption: Symmetric vs Asymmetric

1. There are a few variants of asymmetric encryption schemes. Matrix uses elliptic-curves for its asymmetric encryption needs.

Asymmetric Signatures

In addition to providing encryption, asymmetric encryption schemes also provide
signatures.

Signing uses the private key, and anyone who possesses the public key can verify the
signature.

14

Asymmetric Signatures

In addition to providing encryption, asymmetric encryption schemes also provide
signatures.

Signing uses the private key, and anyone who possesses the public key can verify the
signature.

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Asymmetric Signatures

1. Only the private key can create a valid signature.
2. This is the opposite of encryption where we use the public key to encrypt, and the private key to decrypt.

Asymmetric Signatures

In addition to providing encryption, asymmetric encryption schemes also provide
signatures.

Signing uses the private key, and anyone who possesses the public key can verify the
signature.

14

Asymmetric Signatures

In addition to providing encryption, asymmetric encryption schemes also provide
signatures.

Signing uses the private key, and anyone who possesses the public key can verify the
signature.

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Asymmetric Signatures

1. Only the private key can create a valid signature.
2. This is the opposite of encryption where we use the public key to encrypt, and the private key to decrypt.

Hashes and HMAC

A cryptographic hash function is a one-directional function which takes an arbitrarily
large set of data and produces a unique fixed-size output (called the hash).

Given the same data, a hash function will always return the same output.

This allows us to verify that the data did not change in transit (for example, by a
malicious actor).

Hashes are vulnerable tometadata attacks. To prevent these, we use HMAC which
adds a secret key to the hash.

15

Hashes and HMAC

A cryptographic hash function is a one-directional function which takes an arbitrarily
large set of data and produces a unique fixed-size output (called the hash).

Given the same data, a hash function will always return the same output.

This allows us to verify that the data did not change in transit (for example, by a
malicious actor).

Hashes are vulnerable tometadata attacks. To prevent these, we use HMAC which
adds a secret key to the hash.

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Hashes and HMAC

1. Read slide to last bullet
2. If you hash the same messagemultiple times, you will receive the same value, and an attacker could use this information to deduce the

frequency of certainmessages being sent.
3. Read last bullet
4. How the key is added is an implementation detail that is not relevant. All you need to know is that HMAC prevents metadata attacks.

Hashes and HMAC

A cryptographic hash function is a one-directional function which takes an arbitrarily
large set of data and produces a unique fixed-size output (called the hash).

Given the same data, a hash function will always return the same output.

This allows us to verify that the data did not change in transit (for example, by a
malicious actor).

Hashes are vulnerable tometadata attacks. To prevent these, we use HMAC which
adds a secret key to the hash.

15

Hashes and HMAC

A cryptographic hash function is a one-directional function which takes an arbitrarily
large set of data and produces a unique fixed-size output (called the hash).

Given the same data, a hash function will always return the same output.

This allows us to verify that the data did not change in transit (for example, by a
malicious actor).

Hashes are vulnerable tometadata attacks. To prevent these, we use HMAC which
adds a secret key to the hash.

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Hashes and HMAC

1. Read slide to last bullet
2. If you hash the same messagemultiple times, you will receive the same value, and an attacker could use this information to deduce the

frequency of certainmessages being sent.
3. Read last bullet
4. How the key is added is an implementation detail that is not relevant. All you need to know is that HMAC prevents metadata attacks.

Hashes and HMAC

A cryptographic hash function is a one-directional function which takes an arbitrarily
large set of data and produces a unique fixed-size output (called the hash).

Given the same data, a hash function will always return the same output.

This allows us to verify that the data did not change in transit (for example, by a
malicious actor).

Hashes are vulnerable tometadata attacks. To prevent these, we use HMAC which
adds a secret key to the hash.

15

Hashes and HMAC

A cryptographic hash function is a one-directional function which takes an arbitrarily
large set of data and produces a unique fixed-size output (called the hash).

Given the same data, a hash function will always return the same output.

This allows us to verify that the data did not change in transit (for example, by a
malicious actor).

Hashes are vulnerable tometadata attacks. To prevent these, we use HMAC which
adds a secret key to the hash.

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Hashes and HMAC

1. Read slide to last bullet
2. If you hash the same messagemultiple times, you will receive the same value, and an attacker could use this information to deduce the

frequency of certainmessages being sent.
3. Read last bullet
4. How the key is added is an implementation detail that is not relevant. All you need to know is that HMAC prevents metadata attacks.

Hashes and HMAC

A cryptographic hash function is a one-directional function which takes an arbitrarily
large set of data and produces a unique fixed-size output (called the hash).

Given the same data, a hash function will always return the same output.

This allows us to verify that the data did not change in transit (for example, by a
malicious actor).

Hashes are vulnerable tometadata attacks. To prevent these, we use HMAC which
adds a secret key to the hash.

15

Hashes and HMAC

A cryptographic hash function is a one-directional function which takes an arbitrarily
large set of data and produces a unique fixed-size output (called the hash).

Given the same data, a hash function will always return the same output.

This allows us to verify that the data did not change in transit (for example, by a
malicious actor).

Hashes are vulnerable tometadata attacks. To prevent these, we use HMAC which
adds a secret key to the hash.

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Hashes and HMAC

1. Read slide to last bullet
2. If you hash the same messagemultiple times, you will receive the same value, and an attacker could use this information to deduce the

frequency of certainmessages being sent.
3. Read last bullet
4. How the key is added is an implementation detail that is not relevant. All you need to know is that HMAC prevents metadata attacks.

Key-Derivation Functions (HKDF)

Sometimes, we want to turn a small key into a larger key (or set of larger keys).

Key-Derivation Functions (KDFs) are used to do this.

Matrix uses HKDF which uses HMAC for the key derivation process.

16

Key-Derivation Functions (HKDF)

Sometimes, we want to turn a small key into a larger key (or set of larger keys).

Key-Derivation Functions (KDFs) are used to do this.

Matrix uses HKDF which uses HMAC for the key derivation process.

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Key-Derivation Functions (HKDF)

1. Read first bullet
2. For example, we might want to “stretch” a 32-byte shared secret into a key and IV for AES and a key for HMAC which would be 80 bytes in

total.
3. Read rest of slide

Key-Derivation Functions (HKDF)

Sometimes, we want to turn a small key into a larger key (or set of larger keys).

Key-Derivation Functions (KDFs) are used to do this.

Matrix uses HKDF which uses HMAC for the key derivation process.

16

Key-Derivation Functions (HKDF)

Sometimes, we want to turn a small key into a larger key (or set of larger keys).

Key-Derivation Functions (KDFs) are used to do this.

Matrix uses HKDF which uses HMAC for the key derivation process.

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Key-Derivation Functions (HKDF)

1. Read first bullet
2. For example, we might want to “stretch” a 32-byte shared secret into a key and IV for AES and a key for HMAC which would be 80 bytes in

total.
3. Read rest of slide

Diffie-Hellman Key Exchanges

Often, we need a way to share keys with both the sending and receiving parties across
an unsecured channel.

Diffie-Hellman is a method for using public-key cryptography to facilitate keysharing.

ECDH(Aprivate,Bpublic) = ECDH(Bprivate, Apublic) = Kshared.

17

Diffie-Hellman Key Exchanges

Often, we need a way to share keys with both the sending and receiving parties across
an unsecured channel.

Diffie-Hellman is a method for using public-key cryptography to facilitate keysharing.

ECDH(Aprivate,Bpublic) = ECDH(Bprivate, Apublic) = Kshared.

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Diffie-Hellman Key Exchanges

1. Read first bullet... such as the internet.
2. We can share keys securely in-person, but that is very impractical.

That’s where the Diffie-Hellman (DH) Key Exchangemethod comes in.
3. Read second bullet slide
4. Since Matrix uses elliptic-curve cryptography, the specific variant of Diffie-Hellman that Matrix uses is ECDH (the elliptic curve variant).

I’m not going to discuss the actual mathematical mechanism behind ECDH as it’s quite complex and not relevant to understanding how
Matrix uses ECDH. However, it is essential to understand the main feature it provides:

5. Read equation
6. In this equation, we have two public/private keypairs: A and B.
7. If we have either one of the private keys and the other public key, we can generate the same shared secret.
8. Go through example of what to do if you have Aprivate vs having Bprivate
9. We will get the same value out of ECDH regardless of which private key you have. You only need the other public key, and those are public

keys that can be spread around like butter.

Diffie-Hellman Key Exchanges

Often, we need a way to share keys with both the sending and receiving parties across
an unsecured channel.

Diffie-Hellman is a method for using public-key cryptography to facilitate keysharing.

ECDH(Aprivate,Bpublic) = ECDH(Bprivate, Apublic) = Kshared.

17

Diffie-Hellman Key Exchanges

Often, we need a way to share keys with both the sending and receiving parties across
an unsecured channel.

Diffie-Hellman is a method for using public-key cryptography to facilitate keysharing.

ECDH(Aprivate,Bpublic) = ECDH(Bprivate, Apublic) = Kshared.

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Diffie-Hellman Key Exchanges

1. Read first bullet... such as the internet.
2. We can share keys securely in-person, but that is very impractical.

That’s where the Diffie-Hellman (DH) Key Exchangemethod comes in.
3. Read second bullet slide
4. Since Matrix uses elliptic-curve cryptography, the specific variant of Diffie-Hellman that Matrix uses is ECDH (the elliptic curve variant).

I’m not going to discuss the actual mathematical mechanism behind ECDH as it’s quite complex and not relevant to understanding how
Matrix uses ECDH. However, it is essential to understand the main feature it provides:

5. Read equation
6. In this equation, we have two public/private keypairs: A and B.
7. If we have either one of the private keys and the other public key, we can generate the same shared secret.
8. Go through example of what to do if you have Aprivate vs having Bprivate
9. We will get the same value out of ECDH regardless of which private key you have. You only need the other public key, and those are public

keys that can be spread around like butter.

Big Picture

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key
MAC Key

AES Key/IV
AES Key/IVJSON Encode

Ciphertext MAC

CiphertextMAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

18

Big Picture

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key
MAC Key

AES Key/IV
AES Key/IVJSON Encode

Ciphertext MAC

CiphertextMAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Cryptography Crash Course

Big Picture

1. Let’s go back to the big picture now. Recall that the blue and purple nodes represent cryptographic operations.
2. All these nodes are one of the operations that we discussed.
3. Point out a couple of HKDF, AES, ECDH, HMAC
4. Now, let’s discuss how these are composed together to provide features within Matrix.

Sharing Keys

Sharing Keys

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Sharing Keys

We’re going to start by discussing how we get keys from one device to another. This process is generally called “key sharing”.

Big Picture: Message Security

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

19

Big Picture: Message Security

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Sharing Keys

Big Picture: Message Security

1. Remember, what we are trying to share is theMegolm key because that’s what encrypts and decrypts themessages.
2. There are two ways to share these: encrypted olm events and key backup.

Encrypted Olm Events

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20

Encrypted Olm Events

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Sharing Keys

Encrypted Olm Events

1. Encrypted Olm events are represented by the arrows highlighted in red. They are sent via to-devicemessages which allow you to send
messages to specific devices (rather than rooms).

2. Let’s zoom in to see what’s going on.

Encrypted Olm Events

AliceAlice

Bob Bob

Alice

Device 1

Device 2

Alice Megolm Session Alice Megolm Session
Olm-encrypted 

m.forwarded_room_key 
to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

21

Encrypted Olm Events

AliceAlice

Bob Bob

Alice

Device 1

Device 2

Alice Megolm Session Alice Megolm Session
Olm-encrypted 

m.forwarded_room_key 
to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Sharing Keys

Encrypted Olm Events

1. I got rid of all the irrelevant nodes
2. You can see that we can send keys to other users’ devices via m.room_key events.
3. And actually we use m.room_key events to send keys to our own devices as well.
4. We can also request keys by sending m.room_key_request events to our own verified devices and the other devices can respond using

m.forwarded_room_key events. We will talk about how we know a device is verified later.
5. I’m not going to discuss how Olm encryption works. It’s already been covered many times since it’s basically just the Signal double-ratchet

algorithm.
6. For our purposes, it’s sufficient to know that we can send keys securely to other users’ devices and our own devices via these events.
7. This seems great, why do we have anything else?
8. Well, new logins are the issue. Say Alice just logged in on Device 2 and finished verification.

– If Device 1 is online, she can send key requests to Device 1 and Device 1 can respond.
This works, but there will likely be a lot of keys to request. Every user in every encrypted room has diffrent keys.
This will make Device 1 do a lot of work to send back all the keys.
Onmobile devices, keysharing can’t really be done in the background, especially on iOS.
Even on desktop devices, it’s still a lot of work to process a flood of key requests.

– But it’s even worse if Device 1 is offline. In that case, Alice’s key requests will never be answered.

Key Backup

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

22

Key Backup

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Sharing Keys

Key Backup

1. This ss where key backup comes into play. Key backup allows us to store keys on the server, and restore them from our other devices
even if your other devices are offline or inaccessible.

2. Let’s zoom in and see what’s going on.

Key Backup

AES HMAC

AESHMAC

HKDF HKDF

Equal?

Alice

Alice

Alice
Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

nil

nil

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Device 1

23

Key Backup

AES HMAC

AESHMAC

HKDF HKDF

Equal?

Alice

Alice

Alice
Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

nil

nil

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Device 1

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Sharing Keys

Key Backup

1. In themiddle here we have the “key backup” in green. Key backup is is stored on the server.
2. In this diagram, we’re trying to get the Megolm key from Alice’s Device 1 to her Device 2, so left to right.
3. There are two pieces to key backup:

– the key backup version which includes the backup public key.
– the encrypted session data for each of the backed-up Megolm sessions.

4. Let’s discuss how this works.
5. The first thing to note is that AES is used on both sides to encrypt and decrypt theMegolm session. Only the encrypted version is

stored on the server.
6. But, AES needs a key and initial vector. Where do we get that from? Well, we get it from HKDF.
7. HKDF requires a key as well, so where do we get that from?
8. That comes from a call to ECDH.
9. Note that everything so far is the same on both the encrypting and decrypting sides!

10. Recall that ECDH requires a private key, and the other public key.

Key Backup

AES HMAC

AESHMAC

HKDF HKDF

Equal?

Alice

Alice

Alice
Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

nil

nil

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Device 1

ECDH(Aprivate,Bpublic) = ECDH(Bprivate, Apublic) = Kshared 24

Key Backup

AES HMAC

AESHMAC

HKDF HKDF

Equal?

Alice

Alice

Alice
Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

nil

nil

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Device 1

ECDH(Aprivate,Bpublic) = ECDH(Bprivate, Apublic) = Kshared

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Sharing Keys

Key Backup

1. Remember this formula? If you have either private key, we just need the other public key to get the same value from ECDH.
2. So where do we get the A and B keypairs from?

– The first keypair is theMegolm backup keypair. The public key is stored in the key backup version. The private key is a secret
stored on the user’s device.

– The second keypair is the ephemeral keypair. A new keypair gets created for each backed up session. It’s ephemeral because
the private part is be discarded immediately after the encryption is done. The public key is stored in the encrypted session data.

3. This is where the sides diverge.
4. – The encrypting side gets its private key from the ephemeral keypair.

And it uses theMegolm backup public key as its public key.
– The decrypting side gets its private key from theMegolm backup private key.

And it uses the ephemeral public key as its public key.
5. Critically youmust have theMegolm backup private key to decrypt the key backup.
6. For each Megolm session that we back up in key backup, we store the ephemeral public key and the ciphertext from AES together in the

encrypted session data object.

Key Backup

AES HMAC

AESHMAC

HKDF HKDF

Equal?

Alice

Alice

Alice
Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

nil

nil

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Device 1

25

Key Backup

AES HMAC

AESHMAC

HKDF HKDF

Equal?

Alice

Alice

Alice
Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

nil

nil

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Device 1

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Sharing Keys

Key Backup

1. But there’s another item that we store in this object: theMAC.
2. AMAC is aMessage Authentication Code. It’s basically just a hash of the ciphertext that we use to verify that it hasn’t been tampered

with by amalicious or just straight up incompetent party.
3. We use HMAC to generate the MAC and avoid metadata attacks. Recall that HMAC requires a key.
4. Conviniently, we are already using HKDF to generate the AES key and initial vector, so we can just use the same key derivation to get the

HMAC key.
5. What should happen is that we pass the ciphertext into HMAC. However, the original implementation in libolm failed to do this correctly

and instead just passed an empty buffer, and it has been de-facto spec ever since.
6. So, theMAC is not really useful at all in its current state. I’m hoping that a future version of the spec fixes this.

Device Verification

Device Verification

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Device Verification

Now, let’s discuss device verification.

Who Can We Send Keys To?

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

26

Who Can We Send Keys To?

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Device Verification

Who Can We Send Keys To?

1. Let’s go back to the big picture and notice these arrows that represent requesting keys from our own devices and forwarding them back.
2. Earlier I said that we only want to forward keys to our verified devices?
3. Now, we are going to discuss how verification status is determined.
4. The answer is...

Signatures

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

27

Signatures

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Device Verification

Signatures

1. Signatures!
2. Let’s zoom in on this part.

Signatures

Alice

Alice

Alice
Device 2

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

Device Public Key Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Encrypted Account Data

Device 1

28

Signatures

Alice

Alice

Alice
Device 2

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

Device Public Key Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Encrypted Account Data

Device 1

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Device Verification

Signatures

1. Remember, asymmetric signatures can only be created by the private key, and anyone who possesses the public key can verify the
signature.

2. In Matrix, each device has a device keypair. The public key is an identifier for the device.
3. To verify a device, we sign the device public key.
4. Often, we call this process trusting a key. We trust the key by creating a signature for it.
5. We can use our own device private key to directly trust the other device key.
6. But that is inconvenient. When we log in a new device, all our other devices will need tomake a signature for the new device, and the

new device will have tomake a signature for all the existing devices!
7. So, we introduce a new user-wide key called the “self-signing key” because it signs our own devices.
8. We use the self-signing key to sign the device keys but how do we know if we should trust the self-signing key?
9. That’s where themaster key comes in. The master key signs the self-signing key.

10. We then trust the master key by signing it with our device private key.
11. This creates a chain of trust.

The device private key signs themaster public key which corresponds to themaster private key.
Themaster private key signs the self-signing public key which corresponds to the self-signing private key.
And the self-signing private key signs all of the device public keys.

12. This allows us to trust a single key (in this case, themaster key) and then through the chain of trust, we can trust all of our own devices.

User Verification

User Verification

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

User Verification

Sometimes, we want to trust a user so that we know that all of the devices on their account are under their control.

Additional Identity Verification

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

29

Additional Identity Verification

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

User Verification

Additional Identity Verification

1. If a new device is logged in, we will know if they control the device if they have signed it.
2. If somemalicious actor logged in a new device, they would not be able to sign it, and we would know the other user has been

compromised.

Additional Identity Verification

Alice

Alice

Bob

Bob
Device 1

Self-Signing Public Key

(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Verify Signature

Verify Signature

Encrypted Account Data
Device 1

30

Additional Identity Verification

Alice

Alice

Bob

Bob
Device 1

Self-Signing Public Key

(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Verify Signature

Verify Signature

Encrypted Account Data
Device 1

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

User Verification

Additional Identity Verification

1. The user we want to trust has already signed their devices with their self-signing key, which is itself signed by theirmaster key. So, if we
are able to trust their master key, we will have a chain of trust to all of their devices.

2. This is where the user-signing key comes into play. The user-signing key signs other users’ master keys and is itself signed by our own
master key.

3. This creates another chain of trust.
The device private key signs themaster public key which corresponds to themaster private key.
Themaster private key signs the user-signing public key which corresponds to the user-signing private key.
The user-signing private key signs other users’master public keys.
We can verify the signatures by the other user’smaster private key using theirmaster public key.
Since theirmaster private key signed their self-signing public key, we can verify the signature and trust their self-signing key.
Since their self-signing private key signed their device public keys, we can verify the signatures and trust their device keys.

Secure Secret Storage and Sharing
(SSSS)

Secure Secret Storage and Sharing
(SSSS)

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Secure Secret Storage and Sharing (SSSS)

Wow, that’s a lot of keys! Where are they stored?

Don’t Forget Your Keys

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key
MAC Key

AES Key/IV
AES Key/IVJSON Encode

Ciphertext MAC

CiphertextMAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

31

Don’t Forget Your Keys

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key
MAC Key

AES Key/IV
AES Key/IVJSON Encode

Ciphertext MAC

CiphertextMAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Secure Secret Storage and Sharing (SSSS)

Don’t Forget Your Keys

1. The public keys can be stored on the server.
2. However, the private keys need to remain in the user’s control.

Don’t Forget Your Keys

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

32

Don’t Forget Your Keys

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Secure Secret Storage and Sharing (SSSS)

Don’t Forget Your Keys

1. Today, we’ve seen private keys for key backup, user signing, and device signing as well as themaster key.
2. These keys are stored on each of your devices and can be shared with your other verified devices using those Olm-encrypted to-device

events.
3. But what if you sign out of all of your devices or lose access to them?

Don’t Forget Your Keys

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

33

Don’t Forget Your Keys

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key

MAC Key

AES Key/IV

AES Key/IV

JSON Encode

Ciphertext

MAC

Ciphertext

MAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Secure Secret Storage and Sharing (SSSS)

Don’t Forget Your Keys

1. That’s where secure secret storage and sharing (also known as SSSS, or quadruple S) comes in.
2. It allows you to store your keys encrypted within account data on the server.
3. Let’s zoom in and see what’s going on.

Don’t Forget Your Keys

AES

HKDF

AES Key

Alice

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Encrypted Account Data

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

34

Don’t Forget Your Keys

AES

HKDF

AES Key

Alice

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Encrypted Account Data

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Secure Secret Storage and Sharing (SSSS)

Don’t Forget Your Keys

1. The key that SSSS uses to encrypt the account data is effectively the recovery key.
2. There is a base58-decode and an HKDF transformation which produces the actual key, but it’s basically just your recovery key that

unlocks the encrypted account data.
3. So, you can probably see that if you lose your recovery key, and you have no signed-in devices, there is no way to recover the private

keys. This is why it’s important to store the recovery key in a safe place like a password manager.
4. So, what’s this bottom part? It’s not actually strictly necessary for the encryption, but it allows you to verify that your recovery key is

correct before trying to decrypt account data. If you want the details here, you can read the blog post associated with this talk.

Big Picture

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key
MAC Key

AES Key/IV
AES Key/IVJSON Encode

Ciphertext MAC

CiphertextMAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

35

Big Picture

AES

AES

HMAC

AESHMAC

HKDF

HKDF

AES Key

HKDF

Equal?

Alice

Alice

Bob

Bob

Alice

Device 1

Device 2

Megolm Backup Public Key

(m.megolm_backup.v1)

Ephemeral Public Key

Ciphertext

MAC

Ephemeral Private Key

Megolm Backup Private Key 
(m.megolm_backup.v1)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Public Key

(m.cross_signing.self_signing)

Self-Signing Private Key 
(m.cross_signing.self_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Public Key

(m.cross_signing.user_signing)

User-Signing Private Key 
(m.cross_signing.user_signing)

Device Public Key

Device Public Key

Device Public KeyDevice Private Key

Master Public Key 
(m.cross_signing.master)

Master Public Key 
(m.cross_signing.master)

Master Private Key 
(m.cross_signing.master)

Recovery Key

0x00000....00

nil

nil

m.secret_storage.default_key

m.secret_storage.key.<Key ID>

Key ID

HMAC

MAC Key

Equal?MAC

Decrypts

Verify Signature

Verify Signature

Key Backup Version

Encrypted Session Data

Key Backup

ECDH ECDH

Shared Secret Shared Secret

MAC Key
MAC Key

AES Key/IV
AES Key/IVJSON Encode

Ciphertext MAC

CiphertextMAC

Encrypted Account Data

Alice Megolm Session Alice Megolm Session

JSON Decode

Base58 Decode

Ciphertext

AES Key

Plaintext IV = Key ID

Olm-encrypted 
m.forwarded_room_key 

to-device event

Alice Megolm Session

Olm-encrypted 
m.room_key 

to-device event

Device 1

Olm-encrypted 
m.room_key_request 

to-device event

20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Secure Secret Storage and Sharing (SSSS)

Big Picture

1. Let’s go back once more to the overview.
2. We’ve talked about each piece of this diagram.

– We talked about theMegolm session
– We talked about to-device events
– We talked about key backup
– We talked about self-signing of devices
– We talked about signing of other users
– And then we talked about secure secret storage and sharing

3. I hope that this presentation has helped you understand how it fits together.
4. My goal is to convince people that Matrix cryptography is not scary. It’s complex, but not inaccessible.
5. If you have access to all of the underlying cryptography primitives, all of this is something that a security-conscious programmer could

implement.
6. You almost certainly should not implement the cryptography primitives yourself, but composing them together is doable.

Thank You for Listening!

Questions?

sumnerevans.com/posts/matrix/cryptographic-key-infrastructure
36

Thank You for Listening!

Questions?

sumnerevans.com/posts/matrix/cryptographic-key-infrastructure20
24

-0
9-
21

Matrix Cryptographic Key Infrastructure

Secure Secret Storage and Sharing (SSSS)

Thank You for Listening!

1. And with that, I’d like to thank you for listening!
2. You can scan the QR code for the blog post associated with this talk. The slides are available to download there.
3. If there is time: I believe we have a few minutes for any questions you may have.
4. If there is not time: It looks like we don’t have time for questions, but I’m happy to talk to you off-stage about any questions you have.

https://sumnerevans.com/posts/matrix/cryptographic-key-infrastructure
https://sumnerevans.com/posts/matrix/cryptographic-key-infrastructure

	Cryptography Crash Course
	Sharing Keys
	Device Verification
	User Verification
	Secure Secret Storage and Sharing (SSSS)

